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Chapter 1

Introduction

Few computer systems exist in isolation. Most interact with an environment on
a regular and continuous basis. A computer without any interaction would be
pretty useless in most contexts. At the same time many systems can be decom-
posed into smaller components which could rightfully be considered computers
in their own right. This is certainly true for the vast networks of interdependent
web services offering social networks to billions of users, but remains so down
to the scale of single cars, smartphones and medical implants, to give just some
examples.

It has long been recognised that distributed systems are hard to design and
implement. Many of the problems stem from the inability even of excellent
programmers to correctly survey all possible execution schedules within such a
system, hence overlooking subtle bugs which will emerge only under few sched-
ules and are very hard to understand. More fundamental problems however
occur when the system is required to present a consistent façade to a – typi-
cally spatially – distributed set of users or needs to control multiple parts of
the environment coupled through other channels than only those of the control
system. In such contexts, the propagation delay of information gathered from
the environment throughout the system can become relevant. This thesis is
concerned with this latter type of problems only, trying to delineate what can
conceptually be provided by a distributed system, what cannot, and why.

A practical example without computers will elucidate the fundamental prob-
lem quite well: This evening, you wish to collaborate with a friend of yours on a
hard part of your joint paper. However, this will only be possible if you manage
to call each other, so you can finally think about a solution together. Unfor-
tunately, recent revelations forced you to use some cryptographically secured,
but still slightly experimental phone software which might or might not work
for each of you in any given moment. Alternatively, each of you could just call
it a day and invest your time less scientifically, say by taking a nice walk in the
park.

Being the scientifically minded person that you are, you try to call your
friend, only to find out that indeed the phone software is currently not working.

7



8 CHAPTER 1. INTRODUCTION

So the park it is. Just as you fetch your shoes however, you notice that it has
started raining. Another attempted call to your friend is not answered, possibly
because she has already given up and has gone for a walk herself. Or maybe
she’s just ditching the shoes again because there is rain, too, and will be calling
any minute?

Clearly it would be all easier if you would not need to run between door
and computer to check for rain and working software respectively. While your
laptop is booting and you are carrying it to the door, you wonder how long you
will let the phone software ring before giving up this time. As you contemplate
what to do if it stops raining during those seconds, you find that it would have
been a good idea to agree on a better protocol beforehand. . . 1

The hard problem here is to synchronise two parties whose available actions
change over time. If communication is faster than environmental change, every-
one can just tell what they can currently do and people can find a consensus2

on how to proceed. If however communication is slower than changes in envi-
ronment, such strategies are not guaranteed to work – and will fail in case of
not just stochastic but actively antagonistic environments.

The question then is: What kind of system behaviour will still succeed, even
in the face of slow communication and a fast-changing environment.

To answer that question, this thesis starts with a formalisation of distributed
systems and ways to compare their observable behaviour. The main part then
classifies synchronous systems or specifications by the possibility to find dis-
tributed systems which behave comparably to them. On some of the cases
where we show that no behaviourally equivalent distributed system to a cer-
tain specification exists we also show that our negative example is minimal in
the sense that it is a necessary part of all those systems which can not be dis-
tributed. Afterwards, an executable, if prototypical, implementation of some of
our constructions is given. The thesis then finishes with the usual discussion of
related work and the broader context.

This thesis is largely comprised of papers published during the years 2008
to 2014, as stated at the beginning of chapters and sections where applicable.
I unified definitions and notation between all papers, to make the connections
between them more formally accessible. Naturally, recurring parts have also
been extracted, as the value of repeated introductions of, say, multisets seems
limited. Section 6.3, Chapter 7, and Section 8.1 contain entirely new material,
the latter two concerning practical applicability of the theoretical work.

My first exposure to the topic of this thesis happened during my Studienar-
beit [Sch08] parts of which ended up in a joint paper [GGS09] with Ursula Goltz
and Rob van Glabbeek. Based upon these initial results, we started to isolate
irreducibly synchronous system behaviour. To allow more thorough research

1Just as you realise that nature will not switch rain on and off arbitrarily fast and open
the door, a roof avalanche occurs.

2Which of course carries its own problems. Those of breaking symmetry (which are just
slightly out of scope of this thesis) and those computers don’t have to deal with.
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in the area, and to reduce the probability of chasing model-specific artefacts,
we connected with Uwe Nestmann and Kirstin Peters who followed a parallel
research program based upon the π-calculus instead of Petri nets at TU Berlin.
A joint grant proposal to the German Science Foundation was granted in 2010
and provided funding for the next two years. Later, Stephan Mennicke joined
us at TU Braunschweig and concentrated on characterising system behaviour
using stronger notions of asynchrony. In 2013 the German Science Foundation
accepted our follow-up proposal and the project continued.
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Chapter 2

Basic Notions

The presentation in this chapter is partially taken from [GGSU13].

Definition 1 Let X be a set.

1. The identity function on X, IdX : X → X is defined by IdX(x) := x.

2. A signed multiset overX is an element A ∈ ZX , i. e. a function A : X → Z.

Let A,B be signed multisets over X .

3. A is a multiset iff A(X) ⊆ N.

4. x ∈ X is an element of A, notation x ∈ A, iff A(x) 6= 0.

5. A is finite iff the set {x | x ∈ A(x)} is finite.

6. A ≤ B iff ∀x ∈ X.A(x) ≤ B(x).

7. (A∪B)(x) := max(A(x), B(x)) and (A∩B)(x) := min(A(x), B(x)) denote
signed multisets over X .

8. Similarly (A + B)(x) := A(x) + B(x), (A − B)(x) := A(x) − B(x), and
(k ·A)(x) := k ·A(x) with k ∈ Z denote signed multisets over X .

9. Any function f : X → Z or f : X → ZY from X to either the integers or
the signed multisets over some set Y extends to the finite signed multisets
A over X by f(A) =

∑

x∈X A(x) · f(x).

10. Two signed multisets A : ZX and C : ZY are extensionally equivalent iff
x ∈ X ∩ Y ⇒ A(x) = C(x), x ∈ Y \X ⇒ C(x) = 0, and x ∈ X \ Y ⇒
A(x) = 0.

Extensionally equivalent signed multisets are not distinguished for the remainder
of this thesis. A multiset A with ∀x ∈ A. A(x) ≤ 1 is identified with the set
{x | A(x) = 1}. (This also defines signed multiset ∅.)

11
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2.1 Petri Nets
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Figure 2.1: An example Petri net

A well-known abstraction from distributed systems is the model of Petri nets,
unifying the aspects of causally dependent and concurrent actions in a neat
graphical representation. Petri nets stem from the ideas given in the PhD thesis
of Carl Adam Petri [Pet62]. He forced system states to be structured by means
of local states, capturing concepts of distributed systems, where components are
distributed over several locations. That actions of a single component depend
only on local state information is represented naturally by the firing rule of Petri
nets. In addition, Petri nets offer an intuitive notion of concurrent computation
by the step firing rule, a generalization of the firing rule allowing more than
one transition to fire in parallel (or unordered). Hence distributed systems
specified by Petri nets can be analysed while fully taking into account any
uncertainties in the order in which actions occur. Although decidable, many
interesting properties such as liveness or boundedness of Petri nets are hard
in terms of computational complexity [Esp98]. While Petri nets have been
extended in a myriad of ways to fit different application domains, this thesis is
concerned only with very basic features.

Definition 2 Let Act be a set of actions, and let τ 6∈ Act be the invisible
action. A Petri net is a tuple N = (S, T, F,M0, ℓ) with

• S a set of places,

• T a set of transitions, S ∩ T = ∅,

• F : (S × T ∪ T × S)→ N a flow relation including arc weights,

• M0 : S → N an initial marking, and

• ℓ : T → Act ∪ {τ} a labelling function.

To save redundant words1 we will from now on just say net instead of Petri net.
Nets are depicted by drawing the places as circles and the transitions as

boxes, containing their label. Identities of places and transitions are displayed
next to the net element. When F (x, y) > 0 for x, y ∈ S ∪ T there is an arrow

1about a page of “Petri” across the remaining thesis
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Figure 2.2: A net with quantifiers.

p

s0

s1

a

t2

a

t3

q2

q3

Figure 2.3: The same net expanded.

(arc) from x to y, labelled with the arc weight F (x, y). Weights of 1 are omitted.
When a net represents a concurrent system, a global state of this system is given
as a marking, a multiset M of places, depicted by placing M(s) dots (tokens)
in each place s. The initial state is M0.

To compress the graphical notation, we allow universal quantifiers of the form
∀x.φ(x) to appear in the drawing (cf. Figures 2.2 and 2.3). A quantifier replaces
occurrences of x in place and transition identities with all concrete values for
which φ(x) holds, possibly creating a set of places, respectively transitions,
instead of the depicted single one. Accordingly, an arc of which only one end is
replicated by a given quantifier results in a fan of arcs, one for each replicated
element. If both ends of an arc are affected by the same quantifier, an arc is
created between pairs of elements corresponding to the same x, but not between
elements created due to differing values of x.

Definition 3 Let N = (S, T, F,M0, ℓ) be a net, and let x ∈ S ∪ T .
The multisets •x, x• are given by (•x)(y) := F (y, x) and (x•)(y) := F (x, y)

respectively. If x ∈ T the elements of •x are preplaces, those of x• postplaces.
If x ∈ S they are pretransitions and posttransitions respectively. The token
replacement function J K : T → ZS is defined as JtK := t• − •t. These functions
extend to signed multisets as usual (see Definition 1).

The behaviour of a net is defined by the possible moves between markings M
and M ′, which take place when a finite multiset G of transitions fires. In that
case, each occurrence of a transition t in G consumes F (s, t) tokens from each
place s. Naturally, this can happen only if M makes all these tokens available
in the first place. Next, each t produces F (t, s) tokens in each s.

Definition 4 Let N = (S, T, F,M0, ℓ) be a net. A multiset M ∈ NS is a
marking of N .

Let M,M ′ be two markings of N . A non-empty, finite multiset G ∈ NT is a
step from M to M ′, written M [G〉N M ′, iff

1. M ≥ •G, and

2. M ′ = M − •G+G• = M + JGK.
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The step is often also said to fire in M , resulting in a marking M ′. The
set [M0〉N of reachable markings of N is defined as the smallest set containing
M0 that is closed under [G〉N , meaning that if M ∈ [M0〉N and M [G〉N M ′

for any G then M ′ ∈ [M0〉N . For explicit G, we can also omit the redundant
set-notation, e. g. M [t, u〉NM ′ iff M [{t, u}〉NM ′.

Definition 5 Let N = (S, T, F,M0, ℓ) be a net and t, u ∈ T .
The concurrency relation is defined as

t ⌣ u iff t 6= u ∧ ∃M ∈ [M0〉N .M [{t, u}〉

Definition 6 Let N = (S, T, F,M0, ℓ) be a net. Let M,M ′ be two markings

of N , a ∈ Act, A : NAct, a0a1a2 . . . an = σ ∈ Act∗, and A0A1A2 . . . AN = ρ ∈
(

NAct
)∗
.

1. M
a
−→N M ′ iff ∃t ∈ T.M [{t}〉NM ′ ∧ ℓ(t) = a,

2. M
τ
−→N M ′ iff ∃t ∈ T.M [{t}〉NM ′ ∧ ℓ(t) = τ ,

3. M
τ
−→

∞

N iff ∀n ∈ N∃M ′.M
τ
−→

n
M ′, 2

4. M
A
−→N M ′ iff ∃G ∈ NT .M [G〉NM ′ ∧ ℓ(G) = A,

5. M
σ

=⇒N M ′ iff M
τ
−→

∗

N
a0−→N

τ
−→

∗

N
a1−→N

τ
−→

∗

N
a2−→N · · ·

an−→N
τ
−→

∗

N M ′

6. M
ρ

=⇒N M ′ iff M
τ
−→

∗

N
A0−→N

τ
−→

∗

N
A1−→N

τ
−→

∗

N
A2−→N · · ·

An−→N
τ
−→

∗

N M ′

The negations of these relations are denoted as usual, i. e. by
aX−→N ,

τX−→N ,

and
AX−→N respectively. When omitting the right (target) marking, it is assumed

to be existentially quantified, e. g. M
a
−→N iff ∃M ′.M

a
−→N M ′. The subscript

N is omitted if clear from context.

The following Definition 7 gives some restrictions on nets which this thesis
employs in many places. A particularly easy to analyse subclass is of course
that of finite nets. Note that even though a net is finite, it might still come with
an infinite state space. Nearly as easy are finitary nets, where at all times only
finitely many tokens exist and only finitely many transitions are enabled.

The mapping from net transitions to labels can help with modelling a system
which needs to perform the same external action in different internal states.
When analysing the expressive power of nets however, the additional layer of
indirection mostly gets in the way: With labels, the impossibility theorems
presented later would need additional clauses requiring distinctness of labels, to
exclude spurious examples like nets where all transitions are labelled identically.

Similarly, the effects we are interested in already show themselves when
considering only nets which are 1-safe, i. e. only allow one token to reside on a

2where
τ

−→
n
is the n-fold composition of

τ
−→ with itself
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place at the same time. Our results however can be carried over without too
much work to the slightly larger class of structural conflict nets, where multiple
tokens are allowed on a single place as long as multiple transitions never compete
for these tokens.

Definition 7 A net N = (S, T, F,M0, ℓ) is called

1. finite iff S and T are finite sets,

2. finitary iff M0 is finite, ∀t ∈ T.•t 6= ∅ and x• is finite for all x ∈ S ∪ T ,

3. unlabelled iff ℓ = IdT ,

4. plain labelled or plain iff
(

ℓ(t) = ℓ(u)
)

⇒
(

ℓ(t) = τ ∨ t = u
)

,

5. 1-safe iff M ∈ [M0〉 ⇒M(S) ⊆ {0, 1}.

6. a structural conflict net iff M ∈ [M0〉 ∧M [{t, u}〉 ⇒ •t ∩ •u = ∅.

Lemma 1 Let N = (S, T, F,M0, ℓ) be an unlabelled net. Let σ ∈ Act∗.
(

M0
σ

=⇒M1 ∧M0
σ

=⇒M2

)

⇒M1 = M2.

Proof: σ = a1a2 . . . an and each ai corresponds to the unique transition t ∈ T
with ℓ(t) = ai. By definition M [{t}〉M ′ ∧M [{t}〉M ′′ ⇒ M ′ = M ′′ and the
result follows by induction. �

2.2 Behavioural Equivalences

When considering alternative possible implementations of an existing system or
an abstract specification, one would like to define those implementations which
are “correct”. Depending on application context, however, which deviations in
behaviour are acceptable and which are not, differs. Hence various formalisa-
tions of being a “correct” implementation have been proposed. For an overview
see [Gla01, Gla93].

All these formalisations take the form of an equivalence between behaviours.
If the implementation behaviour is equivalent to the specification behaviour,
it can be considered “correct”. Two such equivalences can be compared on
whether they imply each other. If an equivalence ≈a implies another ≈b, then
≈a is the finer of the two, it detects more differences of behaviour. Ordering
the equivalences into a lattice this way, the degrees to which various features
of behaviour are considered relevant by the equivalences gives rise to semi-
independent dimensions along which equivalences get finer. A comprehensive
presentation of the different equivalences and a visualisation of the resulting
lattice can be found in [Gla93].

Definition 8 Let N = (S, T, F,M0, ℓ) be a net.
A string σ ∈ Act∗ is a weak trace of N iff M0

σ
=⇒.

Two nets are weak trace equivalent iff they have the same set of weak traces.
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Definition 9 Let N = (S, T, F,M0, ℓ) be a net.
A string σ ∈ Act∗ is a completed weak trace of N iff M0

σ
=⇒M for some M

with ∀a ∈ Act.M
aX−→ and M

τX−→.
A string σ ∈ Act∗ is a diverging weak trace of N iff M0

σ
=⇒ M for some M

with M
τ
−→

∞
.

Two nets are weak completed trace equivalent iff they have the same weak
traces, the same completed weak traces and the same diverging weak traces.

Definition 10 Let N = (S, T, F,M0, ℓ) be a net.

A string of multisets σ ∈
(

NAct
)∗

is a weak step trace of N iff M0
σ

=⇒.

A string of multisets σ ∈
(

NAct
)∗

is a completed weak step trace of N iff

M0
σ

=⇒M for some M with ∀a ∈ Act.M
aX−→ and M

τX−→.
A string of multisets σ ∈

(

NAct
)∗

is a diverging weak step trace of N iff

M0
σ

=⇒M for some M with M
τ
−→

∞
.

Two nets are weak completed step trace equivalent iff they have the same
weak step traces, the same completed weak traces and the same diverging weak
step traces.

Definition 11 Let N = (S, T, F,M0, ℓ) be a net.

A pair (σ,X) ∈ Act∗ × 2N
Act

is a step failure pair of N if M0
σ

=⇒ M for

some M with M
τX−→ and ∀A ∈ X.M

AX−→. It is a finite step failure pair if
additionally X is finite. We write F (N) for the set of finite step failure pairs
of N .

Two nets are (finite) step failures equivalent iff they have the same (finite)
step failure pairs. We write N1 ≈F N2 iff N1 and N2 are finite step failures
equivalent.

Definition 12 Let N = (S, T, F,M0, ℓ) be a net.

A pair (σ,X) ∈ Act∗ × 2N
Act

is a step ready pair of N if M0
σ

=⇒ M for

some M with M
τX−→ and A ∈ X ⇔M

A
−→.

Two nets are step readiness equivalent iff they have the same step ready
pairs. We write N1 ≈R N2 iff N1 and N2 are step readiness equivalent.

The definitions of failures and readiness equivalence given above are based on
the stable variants developed in [BKO87, Ros98] of the failures resp. readiness
equivalence given in [BHR84, OH86] and extend them further by capturing steps
instead of singleton actions.

If a system has the potential to engage in an infinite sequence of internal
actions, one speaks of divergence. When comparing two systems without diver-
gence, the stable finite failures equivalence coincides with the failures equivalence
of [BHR84]. When comparing systems of which one is known to be divergence-
free – as we will do in this thesis – stable failures semantics is strictly less
discriminating than the failures equivalence of [BHR84] – only the latter guar-
antees that the other system is divergence-free as well. As a less discriminating
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equivalence will give rise to stronger results about the absence of distributed
implementations of certain systems, we use the stable variant. Similar consid-
erations lead to the restriction that X be finite. As the equivalence is thereby
made less discriminating, we obtain stronger impossibility results.

A variation given in [TV89] has σ containing steps instead of singleton ac-
tions. Again, this leads to a finer equivalence and weaker negative results.

Another equivalence notion we employ is based on the weak bisimilarity of
[Mil89], which is a bit less discriminating than branching bisimilarity as pro-
posed in [GW89]. (Branching) bisimilarity with explicit divergence [GW96,
GLT09], is a variant of (branching) bisimilarity that fully respects the diverging
behaviour of related systems. Since here we only compare systems of which one
admits no divergence at all, the definition simplifies to the requirement that the
other system may not diverge either.

Definition 13 Let N = (S, T, F,M0, ℓ), N
′ = (S′, T ′, F ′,M ′0, ℓ

′) be two nets.
A relation R ⊆ (NS)× (NS′

) is a weak step bisimulation between N and N ′

iff

1. M0RM ′0,

2. M1RM ′1 ∧M1
A
−→M2 ⇒M ′1

A
=⇒M ′2 ∧M2RM ′2,

3. M1RM ′1 ∧M1
τ
−→M2 ⇒M ′1

τ
−→

∗
M ′2 ∧M2RM ′2,

4. M1RM ′1 ∧M ′1
A
−→M ′2 ⇒M1

A
=⇒M2 ∧M2RM ′2, and

5. M1RM ′1 ∧M ′1
τ
−→M ′2 ⇒M1

τ
−→

∗
M2 ∧M2RM ′2,

where A : NAct.

It is a weak step bisimulation with explicit divergence iff furthermore

6. M1RM ′1 ∧M1
τ
−→

∞
⇒M ′1

τ
−→

∞
, and

7. M1RM ′1 ∧M ′1
τ
−→

∞
⇒M1

τ
−→

∞
.

Two nets N and N ′ are weakly step bisimilar (with explicit divergence) iff
a weak step bisimulation (with explicit divergence) between them exists. We
write N ≈B N ′ resp. N ≈∆

B N ′ iff N and N ′ are weakly step bisimilar (with
explicit divergence).

Restricting the label multisets to singletons in the above definition, one
obtains the notions of weak bisimulation and weak bisimilarity between nets.

Next we define an even finer equivalence than step bisimulation by consid-
ering actions not as atomic events but as having a start and an end. An ST-
marking of a net (S, T, F,M0, ℓ) is a pair (M,U)∈NS×T ∗ of a normal marking,
together with a sequence of visible transitions currently firing. The initial ST-
marking is M0 := (M0, ǫ). The visible behaviour is represented by elements of
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Act± := {a+, a−n | a ∈ Act, N ∋ n > 0} which are called visible action phases ,
and we define Act±τ := Act±

.
∪ {τ}. For U ∈ T ∗, we write t ∈(n) U if t is the nth

element of U . Furthermore U−n denotes U after removal of the nth transition.

Definition 14 Let N = (S, T, F,M0, ℓ) be a net, labelled over Actτ .
The ST-transition relations

η
−→ for η∈Act±τ between ST-markings are given

by

1. (M,U)
a+

−→ (M ′, U ′) iff ∃t ∈ T. ℓ(t) = a ∧M [t〉 ∧M ′ = M − •t ∧ U ′ = Ut.

2. (M,U)
a−n

−−→ (M ′, U ′) iff ∃t ∈(n) U. ℓ(t) = a ∧ U ′ = U−n ∧M ′ = M + t•.

3. (M,U)
τ
−→ (M ′, U ′) iff M

τ
−→M ′ ∧ U ′ = U .

4. (M,U)
a+

=⇒ (M ′, U ′) iff (M,U)
τ
−→∗

a+

−→
τ
−→∗ (M ′, U ′).

5. (M,U)
a−

=⇒ (M ′, U ′) iff (M,U)
τ
−→∗

a−

−→
τ
−→∗ (M ′, U ′).

We can now redo the definition of bisimilarity to include the above notions
of extended action durations. We also strengthen it to a branching bisimulation.

Definition 15 Let N = (S, T, F,M0, ℓ), N
′ = (S′, T ′, F ′,M ′0, ℓ

′) be two nets.
A relation R ⊆ (NS × T ∗) × (NS′

× T ′∗) is a branching ST-bisimulation
between N and N ′ iff

1. (M0, ε)R(M ′0, ε),

2. M1RM
′
1 ∧M1

a+

−→M2 ⇒M
′
1

τ
−→∗ M′2

a+

−→M
′
3 ∧M1RM

′
2 ∧M2RM

′
3,

3. M1RM
′
1 ∧M1

a−n

−→M2 ⇒M
′
1

τ
−→∗ M′2

a−n

−−→M
′
3 ∧M1RM

′
2 ∧M2RM

′
3,

4. M1RM
′
1 ∧M1

τ
−→M2 ⇒M

′
1

τ
−→∗ M′2

τ
−→?

M
′
3 ∧M1RM

′
2 ∧M2RM

′
3,

5. M1RM
′
1 ∧M

′
1

a+

−→M
′
2 ⇒M1

τ
−→∗ M2

a+

−→M3 ∧M2RM
′
1 ∧M3RM

′
2,

6. M1RM
′
1 ∧M

′
1

a−n

−→M
′
2 ⇒M1

τ
−→∗ M2

a−n

−−→M3 ∧M2RM
′
1 ∧M3RM

′
2,

7. M1RM
′
1 ∧M

′
1

τ
−→M

′
2 ⇒M1

τ
−→∗ M2

τ
−→?

M3 ∧M2RM
′
1 ∧M3RM

′
2,

where a ∈ Act and we write Mi
τ
−→?

Mj for Mi
τ
−→Mj ∨Mi = Mj .

A branching ST-bisimulation with explicit divergence is defined by addition-
ally requiring

8. if M1RM
′
1 and there is an infinite sequence of states Mi with N ∋ i ≥ 1

such that Mi
τ
−→Mi+1 and MiRM

′
1 for all i, then there exists an infinite

sequence of statesM′i with N ∋ i ≥ 1 such that M′i
τ
−→M

′
i+1 andM1RM

′
i

for all i

and
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9. if M1RM
′
1 and there is an infinite sequence of states M′i with N ∋ i ≥ 1

such that M′i
τ
−→M

′
i+1 and M1RM

′
i for all i, then there exists an infinite

sequence of statesMi with N ∋ i ≥ 1 such that Mi
τ
−→Mi+1 andMiRM

′
1

for all i.

Two nets are branching ST-bisimilar (with explicit divergence) iff a branch-
ing ST-bisimulation (with explicit divergence) between them exists. We write
N1 ≈∆

bSTb N2 iff N1 and N2 are branching ST-bisimilar with explicit divergence.

ST-bisimilarity was originally proposed in [GV87]. It was extended to a
setting with internal actions in [Vog93].

The next proposition says that branching ST-bisimilarity with explicit di-
vergence is more discriminating than (i. e. stronger than, finer than, or included
in) step failures equivalence.

Proposition 1 Let N1 and N2 be nets. If N1 ≈∆
bSTb N2 then N1 ≈F N2.

Proof: Suppose N1 ≈∆
bSTb N2 and 〈σ,X〉 ∈ F (N1). By symmetry it suffices to

show that 〈σ,X〉 ∈ F (N2).
Since N1 ≈∆

bSTb N2, there must be a branching ST-bisimulation B between
the ST-markings of N1 = (S1, T1, F1,M01, ℓ1) and N2 = (S2, T2, F2,M02, ℓ2).
In particular, we have (M01, ǫ)B (M02, ǫ). Let σ =: a1a2 · · · an ∈ Act∗. Then
M01

τ
−→

∗ a1−→
τ
−→

∗ a2−→
τ
−→

∗
· · ·

τ
−→

∗ an−→
τ
−→

∗
M ′1 for a marking M ′1 ∈ NS1 with

M ′1
τX−→ and ∀A ∈ X. M ′1 X A−→. Hence (M01, ǫ)

τ
−→

∗ a+
1−→

a−1
1−→

τ
−→

∗ a+
2−→

a−1
2−→

τ
−→

∗

· · ·
τ
−→

∗ a+
n−→

a−1
n−→

τ
−→

∗
(M ′1, ǫ). Thus, using the properties of a branching bisim-

ulation between N1 and N2, there must be a marking M ′2 ∈NS2 such that we

have (M02, ǫ)
τ
−→

∗ a+
1−→

τ
−→

∗ a−1
1−→

τ
−→

∗ a+
2−→

τ
−→

∗ a−1
2−→

τ
−→

∗
· · ·

τ
−→

∗ a+
n−→

τ
−→

∗ a−1
n−→

τ
−→

∗

(M ′2, ǫ) and (M ′1, ǫ)B (M
′
2, ǫ). Since (M

′
1, ǫ)

τX−→, the ST-marking (M ′1, ǫ) admits
no divergence. As ≈∆

bSTb respects this property, also (M ′2, ǫ) admits no diver-

gence, and there must be an M ′′2 ∈NS2 with M ′′2
τX−→ and (M ′2, ǫ)

τ
−→

∗
(M ′′2 , ǫ).

Clause 7 of Definition 15 then gives us (M ′1, ǫ)B (M
′′
2 , ǫ), and Definition 14 yields

M02
σ

=⇒M ′′2 .

Now let B = {b1, . . . , bm} ∈ X . Then M ′1
BX−→. Suppose, towards a contra-

diction, thatM ′′2
B
−→. Then (M ′′2 , ǫ)

b+1−→
b+2−→ · · ·

b+m−→. Property 5 of Definition 15

implies (M ′1, ǫ)
b+1−→

b+2−→ · · ·
b+m−→ and hence M ′1

B
−→. This is a contradiction, so

M ′′2
BX−→. It follows that 〈σ,X〉 ∈ F (N2). �

In this thesis we employ both step failures equivalence and branching ST-
bisimilarity with explicit divergence. Fortunately it will turn out that for our
purposes the latter equivalence coincides with a simpler variant, branching split
bisimilarity (since always one of the compared nets is unlabelled, see Proposi-
tion 2).

A split marking of a net N = (S, T, F,M0, ℓ) is a pair (M,U) ∈ NS × NT of
a normal marking M , together with a multiset of visible transitions currently
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firing. The initial split marking is Mo := (M0, ∅). A split marking can be
regarded as an abstraction from an ST-marking, in which the total order on the
(finite) multiset of transitions that are currently firing has been dropped. Let
Act±split := {a

+, a− | a ∈ Act}.

Definition 16 Let N = (S, T, F,M0, ℓ) be a net, labelled over Actτ .

The split transition relations
ζ
−→ for ζ ∈ Act±split

.
∪ {τ} between split markings

are given by

1. (M,U)
a+

−→ (M ′, U ′) iff ∃t∈T. ℓ(t) = a∧M [t〉∧M ′ = M−•t∧U ′ = U+{t}.

2. (M,U)
a−

−→ (M ′, U ′) iff ∃t ∈ U. ℓ(t) = a ∧ U ′ = U − {t} ∧M ′ = M + t•.

3. (M,U)
τ
−→ (M ′, U ′) iff M

τ
−→M ′ ∧ U ′ = U .

4. (M,U)
a+

=⇒ (M ′, U ′) iff (M,U)
τ
−→∗

a+

−→
τ
−→∗ (M ′, U ′).

5. (M,U)
a−

=⇒ (M ′, U ′) iff (M,U)
τ
−→∗

a−

−→
τ
−→∗ (M ′, U ′).

Note that (M,U)
a+

−→ iff M
a
−→, whereas (M,U)

a−

−→ iff a ∈ ℓ(U). With
induction on reachability of markings it is furthermore easy to check that
(M,U) ∈ [M0〉 iff τ /∈ ℓ(U) and M +•U ∈ [M0〉.

Definition 17 Redoing Definition 15 with the transition relation given in Def-
inition 16 (and substituting

a−

=⇒ for
a−n

==⇒), we obtain branching split bisimilarity
(with explicit divergence).

For M = (M,U) ∈ NS × T ∗ an ST-marking, let M = (M,U) ∈ NS × NT be
the split marking obtained by converting the sequence U into the multiset U ,
where U(t) is the number of occurrences of the transition t ∈ T in U . Moreover,
define ℓ(M) by ℓ(M,U) := ℓ(U) and ℓ(t1t2 · · · tk) := ℓ(t1)ℓ(t2) · · · ℓ(tk). Fur-
thermore, for η ∈ Act±τ , let η ∈ Act±split

.
∪ {τ} be given by a+ := a+, a−n := a−

and τ := τ . We also write M
(α)
−→M

′ to denote M
α
−→M

′ ∨ (α= τ ∧M=M
′),

meaning that in case α= τ performing a τ -transition is optional.

Observation 1 Let M,M′ be ST-markings, M† a split marking, η ∈Act±τ and
ζ ∈ Act±split ∪ {τ}. Then

1. M ∈ NS×T ∗ is the initial ST-marking of N iff M ∈ NS×NT is the initial
split marking of N ;

2. if M
η
−→M

′ then M
η
−→M′;

3. if M
ζ
−→ M

† then there is a M
′ ∈ NS × T ∗ and η ∈ Act±τ such that

M
η
−→M

′, η = ζ and M′ = M
†;

4. if M
(η)
−→M

′ then M
(η)
−→M′;

5. if M
(ζ)
−→ M

† then there is a M
′ ∈ NS × T ∗ and η ∈ Act±τ such that

M
(η)
−→M

′, η = ζ and M′ = M
†;
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6. if M
τ
−→

∗
M
′ then M

τ
−→

∗
M′;

7. if M
τ
−→

∗
M
† then there is a M

′ ∈ NS × T ∗ such that M
τ
−→

∗
M
′ and

M′ = M
†. �

Lemma 2 Let N1 = (S1, T1, F1,M01, ℓ1) and N2 = (S2, T2, F2,M02, ℓ2) be two
nets, N2 being unlabelled; let M1 and M

′
1 be ST-markings of N1, and M2,M

′
2

ST-markings of N2. If ℓ2(M2) = ℓ1(M1), M1
η
−→ M

′
1 and M2

(η′
)

−−→ M
′
2 with

η′ = η, then there is anM
′′
2 with M2

(η)
−→M

′′
2 , ℓ2(M

′′
2 ) = ℓ1(M

′
1), andM′′2 = M′2.

Proof: If M
η
−→ M

′ or M
(η)
−→ M

′ then ℓi(M
′) is completely determined by

ℓi(M) and η. For this reason the requirement ℓ2(M
′′
2 ) = ℓ1(M

′
1) will hold as

soon as the other requirements are met.

First suppose η is of the form τ or a+. Then η = η and moreover η′ = η
implies η′ = η. Thus we can take M

′′
2 := M

′
2.

Now suppose η := a−n for some n > 0. Then η′ = a−m for some m > 0.
As M1

η
−→, the nth element of ℓ1(M1) must (exist and) be a. Since ℓ2(M2) =

ℓ1(M1), also the nth element of ℓ2(M2) must be a, so there is an M
′′
2 with

M2
(η)
−→ M

′′
2 . Let M2 := (M2, U2). Then U2 is a sequence of transitions of

which the nth and the mth elements are both labelled a. Since the net N2

is unlabelled, those two transitions must be equal. Let M
′
2 := (M ′2, U

′
2) and

M
′′
2 := (M ′′2 , U

′′
2 ). We find that M ′′2 = M ′2 and U ′′2 = U ′2. It follows that

M′′2 = M′2. �

Observation 2 If M
τ
−→

∗
M
′ for ST-markings M,M′ then ℓ(M′) = ℓ(M). �

Observation 3 If ℓ(M1) = ℓ(M2) and M2
a−n

−−→ for some a ∈ Act and n > 0,
then M1

a−n

−−→. �

Observation 4 If M
a−n

−−→ M
′ and M

a−n

−−→ M
′′ for some a ∈ Act and n > 0,

then M
′ = M

′′. �

Proposition 2 Let N1 = (S1, T1, F1,M01, ℓ1) and N2 = (S2, T2, F2,M02, ℓ2)
be two nets, N2 being unlabelled. Then N1 and N2 are branching ST-bisimilar
(with explicit divergence) iff they are branching split bisimilar (with explicit
divergence).

Proof: Suppose B is a branching ST-bisimulation between N1 and N2. Then,
by Observation 1, the relation B split := {(M1,M2) | (M1,M2) ∈ B } is a
branching split bisimulation between N1 and N2.

Now let B be a branching split bisimulation between N1 and N2. Then,
using Observation 1, B ST := {(M1,M2) | ℓ1(M1) = ℓ2(M2) ∧ (M1,M2) ∈ B }
turns out to be a branching ST-bisimulation between N1 and N2:

1. M01B STM02 follows from Observation 1(1), since M01BM02 and ℓ1(M01)=
ℓ2(M02) = ǫ.
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2. Suppose M1B STM2 and M1
η
−→M

′
1. Then M1BM2 and M1

η
−→M′1. Hence

∃M†2,M
‡
2 such that M2

τ
−→

∗
M
†
2

(η)
−→M

‡
2, M1BM

†
2 and M′1BM

‡
2. As N2 is

unlabelled, M†2 = M2. By Observation 1(5), using that M2
(η)
−→ M

‡
2, there

exist M
′
2, η

′ such that M2
(η′

)
−−→ M

′
2, η

′ = η and M′2 = M
‡
2. By Lemma 2,

there is an ST-marking M
′′
2 such that M2

(η)
−→ M

′′
2 , ℓ2(M

′′
2 ) = ℓ1(M

′
1), and

M′′2 = M′2 = M
‡
2. It follows that M

′
1B STM

′′
2 .

3. Suppose M1B STM2 and M2
η
−→ M

′
2. Then M1BM2 and M2

η
−→ M′2.

Hence ∃M†1,M
‡
1 such that M1

τ
−→

∗
M
†
1

(η)
−→ M

‡
1, M

†
1BM2 and M

‡
1BM

′
2.

By Observation 1(7), ∃M∗1 such that M1
τ
−→

∗
M
∗
1 and M∗1 = M

†
1. By

Observation 2, ℓ1(M
∗
1) = ℓ1(M1) = ℓ2(M2), so M

∗
1B STM2. Since N2 is

unlabelled, η 6= τ .

• Let η = a+ for some a ∈ Act. Using that M∗1
(η)
−→ M

‡
1, by Obser-

vation 1(5) ∃M′1, η
′ such that M

∗
1

(η′
)

−−→ M
′
1, η

′ = η and M′1 = M
‡
1. It

must be that η′ = η = a+ and ℓ1(M
′
1) = ℓ1(M

∗
1)a = ℓ2(M2)a = ℓ2(M

′
2).

Hence M
′
1B STM

′
2.

• Let η = a−n for some a ∈ Act and n > 0. By Observation 3, ∃M′1 with
M
∗
1

η
−→M

′
1. By Part 2. of this proof, ∃M′′2 such that M2

(η)
−→M

′′
2 and

M
′
1B STM

′′
2 . By Observation 4 M

′′
2 = M

′
2.

Since the net N2 is unlabelled, it has no divergence. In such a case, the require-
ment “with explicit divergence” requires N1 to be free of divergence as well,
regardless of whether split or ST-semantics is used. �

Bisimulation based equivalences provide very fine discrimination between sys-
tems of different branching structure. When focusing mainly instead on the
causal structure of a system, i. e. how actions are depending on each other, we
employ another equivalence: Completed pomset trace equivalence, an extension
of the pomset trace equivalence of [Pra85], disregards the branching structure
of a system except for local and global deadlocks, but respects the causal rela-
tionships between all actions.

Completed pomset trace equivalence is obtained by unrolling a net into a
process as defined in [Pet77]. Such a process can be understood to be an account
of one particular way to decide all conflicts which occurred while proceeding
from one marking to the next. The behaviour of the net is hence a set of these
processes, covering all possible ways to decide conflicts.

Unrolling a net N intuitively proceeds as follows: The initially marked places
of N are copied into a new net N and their correspondence to the original
places recorded in a mapping π. Then, whenever in N a transition t is fired,
this is replayed in N by a new transition connected to places corresponding by
π to the original preplaces of t and which are not yet connected to any other
posttransition. A new place ofN is created for every token produced by t. Again
all correspondences are recorded in π. Every place of N has thus at most one
posttransition. If it has none, this place represents a token currently residing
on the corresponding original place.
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As a shorthand notation to gather these places, we introduce the end of a
net.

Definition 18 Let N = (S, T, F,M0, ℓ) be a labelled net. The end of the net
is defined as N◦ := {s ∈ S | s• = ∅}.

Definition 19

A pair P = (N, π) is a process of a net N = (S, T, F,M0, ℓ) iff

• N = (S ,T,F,M0, �l) is a net, satisfying

– ∀s ∈ S .|•s| ≤1≥ |s•| ∧ M0(s) =

{

1 iff •s = ∅

0 otherwise
,

– all arc-weights are 1, i. e. F(x, y) ∈ {0, 1} for all x, y and F can be
considered a relation,

– F is acyclic, i. e. ∀x ∈ S ∪ T.(x, x) 6∈ F+, where F

+ is the transitive
closure of F,

– and {t | (t, u) ∈ F+} is finite for all u ∈ T.

• π : S ∪ T→ S ∪ T is a function with π(S ) ⊆ S and π(T) ⊆ T , satisfying

– |π−1(s) ∩M0| = M0(s) for all s ∈ S,

– ∀t ∈ T, s ∈ S. F (s, π(t)) = |π−1(s) ∩ •t| ∧ F (π(t), s) = |π−1(s) ∩ t•|,
and

– ∀t ∈ T.�l(t) = ℓ(π(t)).3

P is called finite if N is finite. P is maximal iff ∄G.π(N◦)[G〉N . The set of all
maximal processes of a net N is denoted by MP (N).

To disambiguate between a not-yet-occurred firing of a transition a and the
impossibility of firing an a, we restrict the set of processes relevant for the
behavioural description to maximal processes. We thereby obtain a just seman-
tics in the sense of Reisig [Rei84] 4, i. e. a transition which remained enabled
infinitely long must ultimately fire.

The conditions for N ensure that a process is indeed a mapping from an
occurrence net as defined in [Pet77, GSW80] to the net N ; hence we have
defined processes here in the classical way as in [GR83, BD87] (even though not
introducing occurrence nets explicitly).

To abstract from the τ -actions introduced in an implementation, we extract
from the maximal processes the causal structure between the fired visible events
in the form of a partially ordered multiset (pomset). Formally, a pomset is an
isomorphism class of a partially ordered multiset of action labels.

3While ℓ and �l look nearly identical, the authors see no problem in that, given the close
correspondence.

4or in modern terms, a “weakly fair” semantics
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Definition 20 A labelled partial order is a structure (V, T,≤, l) where

• V is a set (of vertices),

• T is a set (of labels),

• ≤ ⊆ V × V is a partial order relation and

• l : V → T (the labelling function).

Two labelled partial orders o = (V, T,≤, l) and o′ = (V ′, T,≤′, l′) are iso-
morphic, o ≅ o′, iff there exists a bijection ϕ : V → V ′ such that

• ∀v ∈ V.l(v) = l′(ϕ(v)) and

• ∀u, v ∈ V.u ≤ v ⇔ ϕ(u) ≤′ ϕ(v).

Definition 21 Let o = (V, T,≤, l) be a partial order. The pomset of o is its
isomorphism class [o] := {o′ | o ≅ o′}.

By hiding the unobservable transitions of a process, we gain a pomset which
describes causality relations of all participating visible transitions.

Definition 22 Let P = ((S ,T,F,M0, �l), π) be a process. Let O := {t ∈ T |
�l(t) 6= τ}, i. e. the visible transitions of the process. The visible pomset of P
is the pomset V P (P) := [(O,Act,F∗ ∩ O × O, �l ∩ (O × Act))] where F

∗ is the
transitive and reflexive closure of the flow relation F.

MVP(N) := {V P (P) | P ∈ MP (N)} is the set of visible pomsets of all
maximal processes of N .

Using this notion we can now define completed pomset trace equivalence.

Definition 23 Two nets N and N ′ are completed pomset trace equivalent,
N ≈CPT N ′, iff MVP(N) = MVP(N ′).

In Section 6.2, we want to track causality throughout the evolution of a net,
but restrict attention to 1-safe nets. To this end we extend the usual notion
of marking to dependency marking. Within these dependency markings, every
token is augmented with the labels of all transitions having causally contributed
to its existence. In a way, this can be seen as a very coarse abstraction over
pomset traces, which – crucially – results in a finite state space for finite 1-safe
nets. The basic Petri net notions presented above can then be extended in the
same manner.

Definition 24 Let N = (S, T, F,M0, ℓ) be a net. Let M1,M2 ⊆ S × 2Act

and let pr1, pr2 be the projection functions to the first and second component,
respectively. G ⊆ T,G 6= ∅, is called a dependency step from M1 to M2,
M1[G〉dNM2, iff

• G is a step from M1 to M2 when disregarding the causalities,
i. e. pr1(M1)[G〉Npr1(M2), and
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• causalities are extended by the labels of the firing transitions:

M2 = {p ∈M1 | pr1(p) 6∈
•G}∪









s, ({ℓ(t)} \ {τ}) ∪
⋃

pr1(p)∈
•t

pr2(p)





∣

∣

∣

∣

∣

∣

t ∈ G, s ∈ t•







.

Applying pr1 to a dependency marking results in the classical Petri net notion
of marking. Note that the enrichment of markings into dependency markings
has no impact on the existence of steps, since it neither influences the enabling
of transitions nor their independence. A dependency token (s, P ) ∈ M is Q-
dependent iff Q ⊆ P and Q-independent iff P ∩ Q = ∅. Where appropriate,
we will put a superscript d on symbols to denote their obvious extension to
dependency markings, giving us in particular [M0〉d and

A
=⇒d.
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Chapter 3

Distributed Nets

The following chapter consists mainly of the work published in [GGS08a].

In nets, an inherent concept of simultaneity is built in, since when a tran-
sition has more than one preplace, it can be crucial that tokens are removed
instantaneously. When using a net to model a system which is intended to be
implemented in a distributed way, this built-in concept of synchronous interac-
tion may be problematic.

In this chapter, a given net is regarded as a specification of how a system
should behave, and this specification involves complete synchronisation of the
firing of a transition and the removal of all tokens from its preplaces. We
propose various definitions of an asynchronous implementation of a net N , in
which such synchronous interaction is wholly or partially ruled out and replaced
by asynchronous interaction. The question to be clarified is whether such an
asynchronous implementation faithfully mimics the dynamic behaviour of N .
If this is the case, we call the net N asynchronous with respect to the chosen
interaction pattern.

The resulting concept of asynchrony is parametrised by the answers to three
questions:

1. Which synchronous interactions do we want to rule out exactly?

2. How do we replace synchronous by asynchronous interaction?

3. When does one net faithfully mimic the dynamic behaviour of another?

3.1 Asynchronous Net Classes

To answer the first question we associate a location to each place and each
transition in a net. A transition may take a token instantaneously from a
preplace (when firing) iff this preplace is co-located with the transition; if the
preplace resides on a different location than the transition, we have to assume
the collection of the token takes time, and thus the place looses its token before
the transition fires.

27
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We model the association of locations to the places and transitions in a net
N = (S, T, F,M0, ℓ) as a function D : S ∪ T → Loc, with Loc a set of possible
locations. We refer to such a function as a distribution of N . Since the identity
of the locations is irrelevant for our purposes, we can just as well abstract from
Loc and represent D by the equivalence relation ≡D on S ∪ T given by x ≡D y
iff D(x) = D(y).

In this thesis we do not deal with nets that have a distribution built in. We
characterise the interaction patterns we are interested in by imposing partic-
ular restrictions on the allowed distributions. The implementor of a net can
choose any distribution that satisfies the chosen requirements, and we call a net
asynchronous for a certain interaction pattern if it has a correct asynchronous
implementation based on any distribution satisfying the respective requirements.

The fully asynchronous interaction pattern is obtained by requiring that all
places and all transitions reside on different locations. This makes it necessary
to implement the removal of every token in a time-consuming way. However,
this leads to a rather small class of asynchronous nets, that falls short for many
applications. We therefore propose two ways to loosen this requirement, thereby
building a hierarchy of classes of asynchronous nets. Both require that all places
reside on different locations, but a transition may be co-located with one of
its preplaces. The symmetrically asynchronous interaction pattern allows this
only for transitions with a single preplace, whereas in the asymmetrically asyn-
chronous interaction pattern any transition may be co-located with one of its
preplaces. Since two preplaces can never be co-located, this breaks the sym-
metry between the preplaces of a transition; an implementor of a net has to
choose at most one preplace for every transition, and co-locate the transition
with it. The removal of tokens from all other preplaces needs to be imple-
mented in a time-consuming way. Note that all three interaction patterns break
the synchronisation of the token removal between the various preplaces.

Definition 25 Let D be a distribution on a net N = (S, T, F,M0, ℓ), and let
≡D be the induced equivalence relation on S ∪ T . We say that D is

• fully distributed, D ∈ QFD, when x ≡D y for x, y ∈ S ∪ T only if x = y,

• symmetrically distributed, D ∈ QSD, when

p ≡D q for p, q ∈ S only if p = q,
t ≡D p for t ∈ T, p ∈ S only if •t = {p} and
t ≡D u for t, u ∈ T only if t = u or ∃p ∈ S.t ≡D p ≡D u,

• asymmetrically distributed, D ∈ QAD, when

p ≡D q for p, q ∈ S only if p = q,
t ≡D p for t ∈ T, p ∈ S only if p ∈ •t and
t ≡D u for t, u ∈ T only if t = u or ∃p ∈ S.t ≡D p ≡D u.

The second question raised above was: How do we replace synchronous by
asynchronous interaction? In this section we assume that if an arc goes from a
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place s to a transition t at a different location, a token takes time to move from
s to t. Formally, we describe this by inserting silent (unobservable) transitions
between transitions and their remote preplaces. This leads to the following
notion of an asynchronous implementation of a net with respect to a chosen
distribution.

Definition 26 Let N = (S, T, F,M0, ℓ) be a net, and let ≡D be an equivalence
relation on S ∪ T .

The D-based asynchronous implementation of N is ID(N) := (S ∪ Sτ , T ∪
T τ , F ′,M0, ℓ

′) with

Sτ := {st | t ∈ T, s ∈ •t, s 6≡D t} ,

T τ := {ts | t ∈ T, s ∈ •t, s 6≡D t} ,

F ′(x, y) :=







































F (x, y) if x ∈ T ∧ y ∈ S

F (x, y) if x ∈ S ∧ y ∈ T ∧ s ≡D t

F (s, t) if x = s ∈ S ∧ y = ts ∈ T τ

1 if x = ts ∈ T τ ∧ y = st ∈ Sτ

1 if x = st ∈ Sτ ∧ y = t ∈ T

0 otherwise,

and

ℓ′(t) :=

{

ℓ(t) if t ∈ T

τ otherwise.

For better readability we will use the abbreviations ◦x and x◦ defined as
(◦x)(y) := F ′(y, x) and (x◦)(y) := F ′(x, y) instead of •x or x• when making
assertions about the flow relation of an implementation.

Proposition 3 Let N = (S, T, F,M0, ℓ) be a net and ≡D an equivalence rela-
tion on S ∪ T .

1. ID(N) is a net,

2. ID(N) is finite iff N is,

3. ID(N) is finitary iff N is,

4. ID(N) is plain labelled iff N is.

Proof: We use Sτ , T τ , F ′, and ℓ′ as in Definition 26.
(1): From S ∩ T = ∅ follows Sτ ∩ (T ∪ T τ) = ∅ and T τ ∩ (S ∪ Sτ ) = ∅. All

other requirements follow even more immediately.
(2): If S and T are both finite, so are Sτ and T τ .
(3): t◦ = t• for all t ∈ T and |ts◦| = 1 for all ts ∈ T τ . |s◦| = |s•| for all s ∈ S

and |st
◦| = 1 for all st ∈ Sτ . Hence x◦ is finite for all x ∈ (S ∪ Sτ ∪ T ∪ T τ).

Finally, ◦ts = {st} for all ts ∈ T τ and if s ∈ •t in N then either s ∈ ◦t or st ∈ ◦t.
Hence ◦t 6= ∅ for all t ∈ T ∪ T τ .

(4): ℓ′(T τ ) ∩Act = ∅, i. e. no new labelled transitions were introduced. �
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N

p q

a t b u

QFD

p

τ

q

τ uq

qu

τ

a t b u

QSD

p q

ττ

a t b u

QAD

p q

τ

a t b u

Figure 3.1: Possible results for ID(N) given different requirements

The above protocol for replacing synchronous by asynchronous interaction ap-
pears to be one of the simplest ones imaginable. More intricate protocols, in-
volving many asynchronous messages between a transition and its preplaces,
could be contemplated, but we will not study them yet. Our protocol involves
just one such message, namely from the preplace to its posttransition. The
protocol is illustrated in Figure 3.1.

The last question above was: When does one net faithfully mimic the dy-
namic behaviour of another? This asks for a semantic equivalence on nets,
telling when two nets display the same behaviour. Many such equivalences
have been studied in the literature. We believe that most of our results are
independent of the precise choice of a semantic equivalence, as long as it pre-
serves causality and branching time to some degree, and abstracts from silent
transitions.1 Therefore we choose one such equivalence, based on its technical
convenience in establishing our results, and postpone questions on the effect
of varying this equivalence for further research. Our choice is step readiness

1For results on linear-time equivalences, see Section 6.2 and my earlier work in [Sch08,
Sch09].
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equivalence, as defined in Section 2.2. Using this equivalence, we define a notion
of behavioural asynchrony by asking whether the asynchronous implementation
of a net preserves its behaviour. This notion is parametrised by the chosen
interaction pattern, characterised as a requirement on the allowed distributions.

Definition 27 Let Q be a requirement on distributions of nets.
An unlabelled net N is behaviourally Q-asynchronous iff there exists a dis-

tribution D of N meeting the requirement Q such that ID(N) ≈R N .

Intuitively, the only behavioural difference between a net N and its asyn-
chronous implementation ID(N) can occur when in N a place s ∈ •u is marked,
whereas in ID(N) this token is already on its way from s to its posttransition u.
In that case, it may occur that a transition t 6= u with s ∈ •t is enabled in N ,
whereas t is not enabled in the described state of ID(N). We call the situation
in N leading to this state of ID(N) a distributed conflict ; it is in fact the only
circumstance in which ID(N) fails to faithfully mimic the dynamic behaviour
of N .

Definition 28 Let N = (S, T, F,M0, ℓ) be a net and D a distribution of N .
N has a distributed conflict with respect to D iff

∃t, u ∈ T ∃p ∈ •t ∩ •u.t 6= u ∧ p 6≡D u ∧ ∃M ∈ [M0〉N∃k, l ∈ N.

k · •t ≤M ∧ l · •u(p) ≤M(p) ∧ k · •t(p) 6≤M(p)− l · •u(p) .

Observation 5 If N = (S, T, F,M0, ℓ) is a 1-safe net without arc weights and
D a distribution thereof, then N has a distributed conflict with respect to D iff

∃t, u ∈ T ∃p ∈ •t ∩ •u.t 6= u ∧ p 6≡D u ∧ ∃M ∈ [M0〉N .•t ≤M . �

We wish to call a net N (semi)structurally asynchronous iff the situation out-
lined above never occurs, so that the asynchronous implementation does not
change the behaviour of the net. As for behavioural asynchrony, this notion of
asynchrony is parametrised by the set of allowed distributions.

Definition 29 Let Q be a requirement on distributions of nets.
A net N is (semi)structurally Q-asynchronous iff there exists a distribution

D of N meeting the requirement Q such that N has no distributed conflicts
with respect to D.

The following theorem shows that distributed conflicts describe exactly the crit-
ical situations: For all unlabelled nets the notions of structural and behavioural
asynchrony coincide, regardless of the choice of Q.

Theorem 1 Let N be an unlabelled, finitary net, and Q a requirement on
distributions of nets.

N is behaviourally Q-asynchronous iff it is structurally Q-asynchronous.

Proof: In Section 3.2. �
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Because of this theorem, we call an unlabelled net Q-asynchronous if it is be-
haviourally and/or structurally Q-asynchronous. In this thesis we study this
concept for unlabelled nets only. When taking Q = QFD we speak of fully
asynchronous nets, when taking Q = QSD of symmetrically asynchronous nets,
and when taking Q = QAD of asymmetrically asynchronous nets.

Example 1 The net N of Figure 3.1 is not fully asynchronous, for its unique
D-based asynchronous implementation ID(N) with D ∈ QFD (also displayed in
Figure 3.1) is not step readiness equivalent to N . In fact 〈ε, ∅〉 ∈ R(ID(N)) \
R(N). This inequivalence arises because in ID(N) the option to do an a-action
can be disabled already before any visible action takes place; this is not possible
in N .

The only possible way to avoid a distributed conflict in this net is by taking
t ≡D p ≡D u. This is not allowed for any D ∈ QFD or D ∈ QSD, but it is
allowed for D ∈ QAD (cf. the bottom right net in Figure 3.1). Hence N is
asymmetrically asynchronous, but not symmetrically asynchronous.

Since QFD ⊆ QSD ⊆ QAD, any fully asynchronous net is symmetrically asyn-
chronous, and any symmetrically asynchronous net is also asymmetrically asyn-
chronous. Below we give semi-structural characterisations of these three classes
of nets. The first two stem from [GGS08c], where the class of fully asynchronous
nets is called FA(B) and the class of symmetrically asynchronous nets is called
SA(B). The class AA(B) in [GGS08c] is somewhat larger than our class of
asymmetrically asynchronous nets, for it is based on a slightly more involved
protocol for replacing synchronous by asynchronous interaction.

Definition 30 An unlabelled net N = (S, T, F,M0, ℓ) has a

• partially reachable conflict iff

∃t, u ∈ T ∃p ∈ •t ∩ •u.t 6= u ∧ ∃M ∈ [M0〉N∃k, l ∈ N.

k · •t ≤M ∧ l · •u(p) ≤M(p) ∧ k · •t(p) 6≤M(p)− l · •u(p) ,

• partially reachable N iff

∃t, u ∈ T ∃p ∈ •t ∩ •u∃q ∈ •u.t 6= u ∧ p 6= q ∧ ∃M ∈ [M0〉N∃k, l ∈ N.

k · •t ≤M ∧ l · •u(p) ≤M(p) ∧ k · •t(p) 6≤M(p)− l · •u(p) ,

• left and right border reachable M iff

∃t, u, v ∈ T ∃p ∈ •t ∩ •u, q ∈ •u ∩ •v.t 6= u ∧ u 6= v ∧ p 6= q ∧

∃M1 ∈ [M0〉N∃k, l ∈ N.

k · •t ≤M1 ∧ l · •u(p) ≤M1(p) ∧ k · •t(p) 6≤M1(p)− l · •u(p)∧

∃M2 ∈ [M0〉N∃k, l ∈ N.

k · •v ≤M2 ∧ l · •u(q) ≤M2(q) ∧ k · •v(q) 6≤M2(q)− l · •u(q) .
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Observation 6 If an unlabelled net N = (S, T, F,M0, ℓ) is 1-safe and has no
arc-weights, it has a

• partially reachable conflict iff

∃t, u ∈ T ∃p ∈ •t ∩ •u.t 6= u ∧ ∃M ∈ [M0〉N .•t ≤M ,

• partially reachable N iff

∃t, u ∈ T ∃p ∈ •t ∩ •u.t 6= u ∧ |•u| > 1 ∧ ∃M ∈ [M0〉N .•t ≤M ,

• left and right border reachable M iff

∃t, u, v∈T ∃p∈•t∩•u ∃q∈•u∩•v.
t 6= u ∧ u 6= v ∧ p 6= q ∧
∃M1,M2 ∈ [M0〉N .•t ≤M1 ∧ •v ≤M2 .

�

In effect, these definitions combine Definition 28 with various possible choices
of Q.

Theorem 2 Let N be an unlabelled net.

• N is fully asynchronous iff it has no partially reachable conflict.

• N is symmetrically asynchronous iff it has no partially reachable N.

• N is asymmetrically asynchronous iff it has no left and right border reach-
able M.

Proof: Straightforward with Theorem 1. �

In the theory of nets, there have been extensive studies on classes of nets with
certain structural properties like free choice nets [BS83, Bes87] and simple nets
[BS83], as well as extensions of theses classes. They are closely related to the
net classes defined here, but they are defined without taking reachability into
account. For a comprehensive overview and discussion of the relations between
those purely structurally defined net classes and our net classes see [GGS08c].
Restricted to unlabelled, 1-safe nets without dead transitions (meaning that
every transition t satisfies the requirement ∃M ∈ [M0〉.•t ⊆ M), Theorem 2
says that a net is fully asynchronous iff it is conflict-free in the structural sense
(no shared preplaces), symmetrically asynchronous iff it is a free choice net and
asymmetrically asynchronous iff it is simple.

Our asynchronous net classes are defined for unlabelled nets only. There are
two approaches to lifting them to labelled nets. One is to postulate that whether
a net is asynchronous or not has nothing to do with its labelling function, so
that after replacing this labelling by the identity function one can apply the
insights above. This way our structural characterisations (Theorems 1 and 2)
apply to labelled nets as well. Another approach would be to apply the notion
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of behavioural asynchrony of Definition 27 directly to labelled nets. This way
more nets will be asynchronous, because in some cases a net happens to be
equivalent to its asynchronous implementation in spite of a failure of structural
asynchrony. This happens for instance if all transitions in the original net are
labelled τ . Unlike the situation for unlabelled nets, the resulting notion of
behavioural asynchrony will most likely be strongly dependent on the choice of
the semantic equivalence relation between nets.

3.2 The Asynchronous Implementation

Given a net N and a distribution D on N , this section explores the properties
of the D-based asynchronous implementation ID(N) of N , focussing on the
relationship between ID(N) and N , and culminating in the proof of Theorem 1
of Section 3.1.

The following lemma shows how the D-based asynchronous implementation
of a net N simulates the behaviour of N .

Lemma 3 Let N = (S, T, F,M0, ℓ) be a net, G ∈ NT , σ ∈ Act∗ and M1,M2

markings of N .

• If M1[G〉NM2 then M1
τ
−→

∗

ID(N) [G〉ID(N)M2.

• If M1
σ

=⇒N M2 then M1
σ

=⇒ID(N) M2.

Proof: Assume M1 [G〉N M2. Then, by construction of ID(N),

M1

[

∑

t∈G

{ts | s ∈
•t, s 6≡D t}

〉

ID(N)

[G〉ID(N) M2.

The first part of that execution can be split into a sequence of singleton transi-
tions, all labelled τ . The second statement follows by a straightforward induc-
tion on the length of σ. �

This lemma uses the fact that any marking of N is also a marking on ID(N).
The reverse does not hold, so in order to describe the degree to which the
behaviour of ID(N) is simulated by N we need to explicitly relate markings of
ID(N) to those of N . This is in fact not so hard, as any reachable marking of
ID(N) can be obtained from a reachable marking of N by moving some tokens
into the newly introduced buffering places st. To establish this formally, we
can represent implementation markings as a pair of an original marking and a
multiset of τ -transitions whose effects need to be applied to it. We notate the
resulting pair as M ⊕ H to constantly remember that it actually denotes the
marking M + JHK. Addition and subtraction on such pairs are defined element-
wise. We define a function which transforms implementation markings into such
a form.



3.2. THE ASYNCHRONOUS IMPLEMENTATION 35

Definition 31 Let N = (S, T, F,M0, ℓ) be an unlabelled net and let ID(N) =
(S ∪ Sτ , T ∪ T τ , F ′,M0, ℓ

′). NF : NS∪Sτ

→ ZS × ZT τ

is the function defined
by

NF(M) := (M ↾ S) +
∑

st∈M↾Sτ

({s} ⊕ {ts}) .

We now introduce a predicate α on pairs M ⊕H and via NF on the markings
of ID(N) that holds for a marking iff it can be obtained from a reachable
marking of N (which is also a marking of ID(N)) by firing some unobservable
transitions. Each of these unobservable transitions moves a token from a place
s into a buffering place st. Later, we will show that α exactly characterises
the reachable markings of ID(N). Furthermore, as every token can be moved
only once in this fashion, we can also give an upper bound on how many such
movements can still take place.

Definition 32 Let N = (S, T, F,M0, ℓ) be a finitary, unlabelled net and let
ID(N) = (S ∪ Sτ , T ∪ T τ , F ′,M0, ℓ

′). The predicate α ⊆ NS ×ZT τ

is given by

α(M ⊕H) iff M ∈ [M0〉N ∧M + JHK ∈ NS∪Sτ

.

The function d : NS × ZT τ

→ Z ∪ {∞} is given by

d(M ⊕H) := |M ↾ {s | s ∈ S, ∃t ∈ s•.s 6≡D t}| −
∑

ts∈H

|•ts|,

where we choose not to distinguish between different degrees of infinity.

The following lemma confirms that our informal description of α matches its
formal definition.

Lemma 4 Let N and ID(N) be as above and M⊕H ∈ NS×ZT τ

, with M finite.
Then

1. M + JHK ∈ NS∪Sτ

iff M
τ
−→

∗

ID(N) M + JHK, and

2. α(M ⊕H)⇒ d(M ⊕H) ∈ N.

Proof: (1): “If” follows from the definition of
τ
−→: For “only if”, note that

M [H〉ID(N) M + JHK as ◦H ∩H◦ = ∅ by construction of ID(N).

(2): From α(M ⊕H) follows M + JHK ∈ NS∪Sτ

. Hence

∀s ∈ S.M(s) ≥
∑

ts∈H

F ′(s, ts) .

As all members of H are from T τ and by construction of the form ts for some
t ∈ s• with s 6≡D t, this ensures

∑

ts∈H
|•ts| ≤ |M ↾ {s | s ∈ S, ∃t ∈ s•.s 6≡D t}|.

�

Now we can describe how any net simulates the behaviour of its fully asyn-
chronous implementation.
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Lemma 5 Let N and ID(N) be as above, G ∈ NT , σ ∈ Act∗ and M,K ∈
NS∪Sτ

.

1. α(M0 ⊕ ∅).

2. If α(M ⊕H) ∧M + JHK [G〉ID(N) K

then ∃M ′ ∈ NS , H ′ ∈ ZT τ

.K = M ′ + JH ′K ∧M [G〉NM ′ ∧ α(M ′ ⊕H ′).

3. If α(M ⊕H) ∧M + JHK τ
−→ID(N) K

then ∃M ′ ∈ NS , H ′ ∈ ZT τ

.K = M ′ + JH ′K ∧M = M ′ ∧ α(M ⊕ H ′) ∧
d(M ⊕H) > d(M ⊕H ′).

4. If M0
σ

=⇒ID(N) K

then ∃M ′ ∈ NS , H ′ ∈ ZT τ

.K = M ′ + JH ′K ∧M0
σ

=⇒N M ′ ∧ α(M ′ ⊕H ′).

Proof: (1): M0 ∈ [M0〉N and M0 ∈ NS .
(2): A simple calculation shows that for any t ∈ T

JtKID(N) = JtKN −
t
⋃

s∈•t

{ts}

|

ID(N)

. (3.2)

Suppose α(M ⊕H) and M + JHK [G〉ID(N) K with G ∈ NT . By definition
of [G〉ID(N) we have K = M + JHK + JGKID(N). Applying (3.2), K = M +
JHK + JGKN − J∑t∈G

⋃

s∈•t{ts}KID(N). Reordering we take M ′ := M + JGKN
and H ′ := H −

∑

t∈G

⋃

s∈•t{ts}.

From the definition of [G〉ID(N) we have M ′ + JH ′KID(N) ∈ NS∪Sτ

. To show
M [G〉NM ′ and thereby also α(M ′⊕H ′) we need •G ≤M and M ′ = M+JGKN .

The latter is true by definition. The former follows via Lemma 16 by the
existence of the faithful path s, ts, st, t with respect to S+ = S and T+ = T τ for
each t ∈ G and s ∈ •t with s 6≡D t.

(3): From M + JHK τ
−→ K follows that M + JHK[t〉K for some t ∈ T ∪ T τ

with ℓ′(t) = τ and K = M + JHK+ JtK. We take M ′ := M and H ′ := H + {t}.

M ′ = M and K = M ′ + JH ′K follow immediately. From the definition of
τ
−→

follows M ′ + JH ′K ∈ NS∪Sτ

and as M ′ = M we have α(M ′ ⊕ H ′). Finally
d(M ⊕H) > d(M ′ ⊕H ′) as H < H ′.

(4): Using (1–3), this follows by a straightforward induction on the number

of transitions in the derivation M0
σ

=⇒ID(N) M
′. �

In contrast to [GGS08a], the theory in this section employs the M⊕H notation I
invented for [GGSU13]. The preceding proof of Lemma 5 was thereby shortened
from the entire page it took in [GGS08a].

But let us continue towards Theorem 1, to which the following lemma is a
crucial step.

Lemma 6 Let N = (S, T, F,M0, ℓ) be an unlabelled, finitary net without
a distributed conflict, w.r.t. a distribution D. Let ID(N) = (S ∪ Sτ , T ∪
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T τ , F ′,M0, ℓ
′), K1 = M + J∅K with M ∈ [M0〉N , and K1

τ
−→ID(N) K2

τ
−→ID(N)

· · ·
τ
−→ID(N) Kn

τX−→ID(N) for some n ≥ 1. Let G ∈ NT .
Then M [G〉N iff Kn[G〉ID(N).

Proof: By Lemma 5 3, we can write all Ki as M + JHiK ∈ NS∪Sτ

Suppose G(t) = k. Pick any p ∈ •t. There are two cases to consider:

1. If p ≡D t it follows that k · ◦t(p) ≤ (M + JHnK)(p) as otherwise there must
be some up ∈ Hi which removed the tokens from p. From p ≡D t follows
tp 6∈ Sτ and it would hold that u 6= t ∧ p 6≡D u and a distributed conflict
with l = Hn(up) would exist. This contradicts the assumptions.

2. If p 6≡D t it follows that (M + JHnK)(p) < •t(p) as otherwise M +

JHnK[tp〉ID(N) which contradicts M + JHnK τX−→. If k · {tp} 6≤ M + JHnK
this must be due to some up ∈ Hn. Taking l = Hn(up) this constitutes a
distributed conflict, violating the assumptions. Hence k ·{tp} ≤M+JHnK.

In both cases k · ◦t ≤M + JHnK.
It follows that M1 [t〉N implies Mn [t〉ID(N) for all t∈T . Moreover, it follows

immediately from the construction of ID(N) that if two transitions t, u∈ T are
independent in N , then they are also independent in ID(N). Hence M1 [G〉N
implies Mn [G〉ID(N) for all G ∈ NT .

For the reverse direction, observe that α(M ⊕ ∅), because M ∈ [M0〉N .
Hence α(M ⊕ Hn) by Lemma 5.3 and M + JHnK[G〉ID(N) implies M [G〉N by
Lemma 5.2. �

We can now prove Theorem 1 from earlier.

Theorem 1 Let N = (S, T, F,M0, ℓ) be an unlabelled, finitary net, and Q a
requirement on distributions of nets.

N is behaviourally Q-asynchronous iff it is structurally Q-asynchronous.

Proof: “Only if”: Suppose N fails to be structurally Q-asynchronous. Let D
be a distribution on N meeting the requirement Q. Then N has a distributed
conflict with respect to D, i. e.

∃t, u ∈ T ∃p ∈ •t ∩ •u.t 6= u ∧ p 6≡D u ∧ ∃M ∈ [M0〉N∃k, l ∈ N.

k · •t ≤M ∧ l · •u(p) ≤M ∧ k · •t(p) 6≤M(p)− l · •u(p) .
(3.3)

We need to show that ID(N) 6≈R N .

Take the M, l, k, p, t, u from (3.3) and let σ ∈ Act∗ be such that M0
σ

=⇒N M .
Then N has a step ready pair 〈σ,X〉 with k · {ℓ(t)} ∈ X . As unlabelled nets
are deterministic [VN82], M is the only marking of N with the property that

M0
σ

=⇒N M . Hence N has exactly one step ready pair after σ and it satisfies
k · {ℓ(t)} ∈ X .

Lemma 3 yields M0
σ

=⇒ID(N) M . Also M [up〉ID(N) M + JupK by Defini-
tion 26, so M

τ
−→ M + JupK and this process can be repeated l times. Let
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H1 = l · {up}. Then (M + JH1K)(p) < k · •t(p). By Lemma 5.3, we have

M + JH1K τ
−→ID(N) M + JH2K τ

−→ID(N) · · ·
τ
−→ID(N) M + JHnK τX−→ID(N) for

some n ≤ d(M ⊕ ∅) ∈ N.
As v◦ ⊆ Sτ for all v∈T τ , we have (M+JHiK)(p) < k ·•t(p) for i = 1, 2, . . . , n.

Moreover, in case p 6≡D t we have pt ∈ v◦ only if ◦v = •t(p) · {p}; hence also
k · {pt} 6≤ M + JHiK for i = 1, 2, . . . , n. It follows that k · ◦t 6≤ M + JHnK.
Thus ID(N) has a step ready pair 〈σ,X〉 with k · {ℓ(t)} /∈ X . We find that
R(ID(N)) 6= R(N).

“If”: Suppose N is structurally Q-asynchronous, i. e. there is a distribution
D on N meeting the requirement Q, such that N has no distributed conflicts
with respect to D. We show that R(ID(N)) = R(N).

‘’⊇”: Let 〈σ,X〉 ∈ R(N). Then there is a marking M of N such that

M0
σ

=⇒N M and, as N is unlabelled, for all G ∈ NT , ℓ(G) ∈ X ⇔ M [G〉N .

Lemma 3 yields M0
σ

=⇒ID(N) M . By Lemma 5.3, we have M
τ
−→ID(N) M +

JH1K τ
−→ID(N) M + JH2K τ

−→ID(N) · · ·
τ
−→ID(N) M + JHnK τX−→ID(N) for some

0 ≤ n ≤ d(M ⊕ ∅) ∈ N. Now Lemma 6 yields M [G〉N ⇔ M + JHnK[G〉ID(N).

Hence M + JHnK
ℓ(G)
−→ID(N)⇔ ℓ(G) ∈ X and 〈σ,X〉 ∈R(ID(N)).

“⊆”: Let 〈σ,X〉∈R(ID(N)). Then there is a markingM of ID(N) such that

M0
σ

=⇒ID(N) M , M
τX−→ID(N), and for each A ∈ X there exists a unique G ∈ NT

with ℓ(G) = A such that M [G〉ID(N). Lemma 5.(4 and 3) yields M0
σ

=⇒N M1

and some H1 with M1 + JH1K = M and M1 + JH1K 6 τ−→ID(N) and α(M1 ⊕H1)
and Lemma 4 givesM1

τ
−→

∗

ID(N) M1+JH1K. Now Lemma 6 yieldsM [G〉ID(N) ⇔
M1[G〉N and thereby 〈σ,X〉 ∈R(N). �

3.3 An Alternate Characterisation

The approach of Section 3.1 makes a difference between a net regarded as a
specification, and an asynchronous implementation of the same net. The latter
could be thought of as a way to execute the net when a given distribution
makes the synchronisations that are inherent in the specification impossible.
In this and the following section, on the other hand, we drop the difference
between a net and its asynchronous implementation. Instead of adapting our
intuition about the firing rule when implementing a net in a distributed way,
we insist that all synchronisations specified in the original net remain present
as synchronisations in a distributed implementation. Yet, at the same time
we stick to the point of view that it is simply not possible for a transition
to synchronise its firing with the removal of tokens from preplaces at remote
locations. Thus we only allow distributions in which each transition is co-located
with all of its preplaces. We call such distributions effectual. For effectual
distributions D, the implementation transformation ID is the identity. As a
consequence, if effectuality is part of a requirement Q imposed on distributions,
the question whether a net is Q-asynchronous is no longer dependent on whether
an asynchronous implementation mimics the behaviour of the given net, but
rather on whether the net allows a distribution satisfying Q at all.
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The requirement of effectuality does not combine well will the requirements
on distributions proposed in Definition 25. For if Q is the class of distributions
that are effectual and asymmetrically distributed, then only nets without tran-
sitions with multiple preplaces would be Q-asynchronous. This rules out most
useful applications of Petri nets. The requirement of effectuality by itself, on
the other hand, would make every net asynchronous, because we could assign
the same location to all places and transitions.

We impose one more fundamental restriction on distributions, namely that
when two visible transitions can occur in one step, they cannot be co-located.
This is based on the assumption that at a given location visible actions can only
occur sequentially, whereas we want to preserve as much concurrency as possible
(in order not to loose performance). Recall that in Petri nets simultaneity of
transitions cannot be enforced: if two transitions can fire in one step, they can
also fire in any order. The standard interpretation of nets postulates that in
such a case those transitions are causally independent, and this idea fits well
with the idea that they reside at different locations.

3.3.1 Distributed Nets

This leads to the following definition of a distributed net.

Definition 33 [GGS08a] A net N = (S, T, F,M0, ℓ) is distributed iff there ex-
ists a distribution D such that
(1) ∀s ∈ S, t ∈ T. s ∈ •t =⇒ t ≡D s,
(2) ∀t, u ∈ T. t ⌣ u =⇒ t 6≡D u.

A typical example of a net which is not distributed is shown in Figure 5.2 on
Page 64. Transitions t and v are concurrently executable and hence should be
placed on different locations. However, both have preplaces in common with u
which would enforce putting all three transitions on the same location. In fact,
distributed nets can be characterised in the following semi-structural way.

Observation 7 A net is distributed iff there is no sequence t0, . . . , tn of tran-
sitions with t0 ⌣ tn and •ti−1 ∩

•ti 6= ∅ for i = 1, . . . , n. �

Since a structural conflict net is defined as a net without such a sequence with
n= 1 (cf. Definition 7), we obtain:

Observation 8 Every distributed net is a structural conflict net. �

Further on, we use a more liberal definition of a distributed net, called essen-
tially distributed. We will show that up to ≈∆

bSTb any essentially distributed
net can be converted into a distributed net. In [GGS08a] we employed an even
more liberal definition of a distributed net, which we call here externally dis-
tributed. Although we showed that up to step failures equivalence any externally
distributed net can be converted into a distributed net, this does not hold for
≈∆

bSTb.
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Definition 34 A net N = (S, T, F,M0, ℓ) is essentially distributed iff there
exists a distribution D satisfying (1) of Definition 33 and
(2′) ∀t, u ∈ T. t ⌣ u ∧ ℓ(t) 6= τ =⇒ t 6≡D u.
It is externally distributed iff there exists a distribution D satisfying (1) and
(2′′) ∀t, u ∈ T. t ⌣ u ∧ ℓ(t), ℓ(u) 6= τ =⇒ t 6≡D u.

Instead of ruling out co-location of concurrent transitions in general, essentially
distributed nets permit concurrency of internal transitions – labelled τ – at
the same location. Externally distributed nets even allow concurrency between
visible and silent transitions at the same location. If the transitions t and v
in the net of Figure 5.2 would both be labelled τ , the net would be essentially
distributed, although not distributed; in case only v would be labelled τ the
net would be externally distributed but not essentially distributed. Essentially
distributed nets need not be structural conflict nets; in fact, any net without
visible transitions is essentially distributed.

Definition 35 Given any net N , the canonical co-location relation ≡C on N is
the equivalence relation on the places and transitions of N generated by Con-
dition (1) of Definition 33, i. e. the smallest equivalence relation ≡D satisfying
(1). The canonical distribution of N is the distribution C that maps each place
or transition to its ≡C-equivalence class.

Observation 9 A net that is distributed (resp. essentially or externally dis-
tributed) w.r.t. any distribution D, is distributed (resp. essentially or externally
distributed) w.r.t. its canonical distribution.

This follows because whenever a co-location relation ≡D satisfies Condition (2)
of Definition 33 (resp. Condition (2′) or (2′′) of Definition 34), then so does
any smaller co-location relation. Hence a net is distributed (resp. essentially or
externally distributed) iff its canonical distribution D satisfies (2) (resp. (2′) or
(2′′)). �

3.3.2 LSGA Nets

In this section we give an alternative, more concrete characterisation of nets
representing distributed systems, by composing them asynchronously from se-
quential components. We call the resulting nets locally synchronous, globally
asynchronous nets. We show below that the concrete characterisation of dis-
tributed systems as LSGA nets and the abstract characterisation as distributed
nets agree. Formally, we introduce a model of distributed systems as nets con-
sisting of component nets with sequential behaviour and interfaces in terms of
input and output places.

Definition 36 Let N=(S, T, F,M0, ℓ) be a net, I, O⊆S, I ∩O=∅ and O• = ∅.
1. (N, I,O) is a component with interface (I, O).
2. (N, I,O) is a sequential component with interface (I, O) iff
∃Q ⊆ S\(I ∪O) with |M0 ↾ Q| = 1 and ∀t ∈ T.|•t ↾ Q| = 1 ∧ |t• ↾ Q| = 1.
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An input place i ∈ I of a component C = (N, I,O) can be regarded as a
mailbox of C for a specific type of messages. An output place o ∈ O, on the
other hand, is an address outside C to which C can send messages. Moving a
token into o is like posting a letter. The condition o• = ∅ says that a message,
once posted, cannot be retrieved by the component.2

A set of places like Q above is a special case of an S-invariant. The require-
ments guarantee that the number of tokens in these places remains constant,
in this case 1. It follows that no two transitions can ever fire concurrently.
Conversely, whenever a net is sequential, in the sense that no two transitions
can fire in one step, it is easily converted into a behaviourally equivalent net
with the required S-invariant, namely by adding a single marked place with a
self-loop to all transitions. This modification preserves virtually all semantic
equivalences on nets from the literature, including ≈∆

bSTb.
Next we define an operator for combining components with asynchronous

communication by fusing input and output places.

Definition 37 Let K be an index set.
Let ((Sk, Tk, Fk,M0k, ℓk), Ik, Ok) with k ∈ K be components with interface such
that (Sk ∪ Tk) ∩ (Sl ∪ Tl) = (Ik ∪ Ok) ∩ (Il ∪ Ol) for all k, l ∈ K with k 6= l
(components are disjoint except for interface places) and Ik ∩ Il = ∅ for all
k, l ∈ K with k 6= l (mailboxes cannot be shared; any message has a unique
recipient).
Then the asynchronous parallel composition of these components is defined by

∥

∥

∥

i∈K
((Sk, Tk, Fk,M0k, ℓk), Ik, Ok) = ((S, T, F,M0, ℓ), I, O)

with S=
⋃

k∈K Sk, T=
⋃

k∈KTk, F=
⋃

k∈K Fk, M0=
∑

k∈K M0k, ℓ=
⋃

k∈K ℓk
(componentwise union of all nets), I=

⋃

k∈K Ik (we accept additional inputs
from outside), and O=

⋃

k∈K Ok \
⋃

k∈K Ik (once fused with an input, o ∈Ok is
no longer an output).

Note that the asynchronous parallel composition of components with interfaces
is again a component with interface.

Observation 10 ‖ is associative.

This follows directly from the associativity of the (multi)set union operator. �

We are now ready to define the class of nets representing systems of asyn-
chronously communicating sequential components.

Definition 38 A net N is an LSGA net (a locally sequential globally asyn-
chronous net) iff there exists an index set K and sequential components with
interface Ck, k ∈ K, such that (N, I,O) = ‖k∈KCk for some I and O.

2We could have required that •I = ∅, thereby disallowing a component to put messages
in its own mailbox. This would not lead to a loss of generality in the class of distributed
systems that can be obtained as the asynchronous parallel composition of sequential compo-
nents, defined below. However, this property is not preserved under asynchronous parallel
composition (defined below), and we like the composition of a set of (sequential) components
to be a component itself (but not a sequential one).
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Up to ≈∆
bSTb – or any reasonable equivalence preserving causality and branching

time but abstracting from internal activity – the same class of LSGA systems
would have been obtained if we had imposed, in Definition 36 of sequential
components, that I, O and Q form a partition of S and that •I = ∅.3 However,
it is essential that our definition allows multiple transitions of a component to
read from the same input place.

The idea of modelling asynchronously communicating sequential components
by sequential nets interacting though buffer places has also been considered in
[Rei82]. There Wolfgang Reisig introduces a class of systems, represented as
nets, where the relative speeds of different components are guaranteed to be
irrelevant. His class is a strict subset of our LSGA nets, requiring additionally,
amongst others, that all choices in sequential components are free, i. e. do not
depend upon the existence of buffer tokens, and that places are output buffers
of only one component. Another quite similar approach was taken in [EHH10],
where transition labels are classified as being either input or output. There,
asynchrony is introduced by adding new buffer places during net composition.
This framework does not allow multiple senders for a single receiver.

3.3.3 Relation between LSGA Nets and Distributed Nets

We proceed to show that the classes of LSGA nets, distributable nets and es-
sentially distributable nets essentially coincide.

That every LSGA net is distributed follows because we can place each se-
quential component on a separate location. The following two lemmas con-
stitute a formal argument. Here we call a component with interface (N, I,O)
distributed iff N is distributed.

Lemma 7 Any sequential component with interface is distributed.

Proof: As a sequential component displays no concurrency, it suffices to co-
locate all places and transitions. �

Lemma 8 states that the class of distributed nets is closed under asynchronous
parallel composition.

3First of all, any i ∈ I with •i 6= ∅ can be split into a pure input place, receiving tokens
only from outside the component, and an internal place, which is the target of all arcs that
used to go to i. Any transition t with i ∈ •t now needs to be split into one that takes its input
token from the pure input place and one that takes it from the internal incarnation of i. In
fact, if F (i, t) = n then t needs to be split into n+1 copies. The result of this transformation
is that •I = ∅.

Next, any component C = ((S, T, F,M0, ℓ), I, O) with •I = ∅ can be replaced by an equiv-
alent component ((S′, T ′, F ′,M ′0, ℓ

′), I, O) whose places S′ are I
.
∪ O
.
∪ Q, where Q is the set

of markings of C, each restricted to the places outside I and O. For each transition t and
markings M,M ′ of the component such that M [t〉 M ′, writing q := M ↾ (S \ (I ∪ O)) and
q′ := M ′ ↾ (S \ (I ∪O)), there will be a transition tq ∈ T ′ with F ′(i, tq) = F (i, t) for all i∈ I,
F ′(tq , o) = F (t, o) for all o ∈O, F ′(q, t) = F ′(t, q′) = 1, and F ′(p, t) = F ′(t, p) = 0 otherwise.
Moreover, ℓ′(tq) = ℓ(t) and M ′0 consists of the single place M0 ↾ (S \(I∪O)). This component
clearly has the required properties.
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Lemma 8 Let Ck = (Nk, Ik, Ok), k∈K, be components with interface, satisfying
the requirements of Definition 37, which are all distributed. Then ‖k∈KCk is
distributed.

Proof: We need to find a distribution D satisfying the requirements of Defini-
tion 33.

Every component Ck is distributed and hence comes with a distribution Dk.
Without loss of generality the codomains of all Dk can be assumed disjoint.

Considering eachDk as a function from net elements onto locations, a partial
function D′k can be defined which does not map any places in Ok, denoting
that the element may be located arbitrarily, and behaves as Dk for all other
elements. As an output place has no posttransitions within a component, any
total function larger than (i. e. a superset of) D′k is still a valid distribution for
Nk.

Now D′ =
⋃

k∈K D′k is a (partial) function, as every place shared between
components is an input place of at most one. The required distribution D can
be chosen as any total function extending D′; it satisfies the requirements of
Definition 33 since the Dk’s do. �

Corollary 1 Every LSGA net is distributed. �

Corollary 2 Every LSGA net is a structural conflict net. �

Conversely, any distributed net N , and even any essentially distributed net
N , can be transformed in an LSGA net by choosing co-located transitions with
their pre- and postplaces as sequential components and declaring any place that
belongs to multiple components to be an input place of component Nk if it is
a preplace of a transition in Nk, and an output place of component Nl if it is
a postplace of a transition in Nl and not an input place of Nl. As transitions
sharing a preplace are co-located, a place will be an input place of at most
one component. Furthermore, in order to guarantee that the components are
sequential in the sense of Definition 36, an explicit control place is added to each
component – without changing behaviour – as explained below Definition 36.
It is straightforward to check that the asynchronous parallel composition of all
so-obtained components is an LSGA net, and that it is equivalent to N (using
≈F , ≈∆

bSTb, or any other reasonable equivalence).

Theorem 3 For any essentially distributed net N there is an LSGA net N ′

with N ′ ≈∆
bSTb N .

Proof: Let N = (S, T, F,M0, ℓ) be an essentially distributed net with a distri-
bution D. Then an equivalent LSGA net N ′ can be constructed by composing
sequential components with interfaces as follows.

For each equivalence class [x] of net elements according to D a sequential
component (N[x], I[x], O[x]) is created. Each such component contains one new
and initially marked place p[x] which is connected via self-loops to all transitions
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in [x]. The interface of the component is formed by I[x] := (S ∩ [x])4 and
O[x] := ([x] ∩ T )• \ [x]. Formally, N[x] := (S[x], T[x], F[x],M0[x], ℓ[x]) with

• S[x] = ((S ∩ [x]) ∪O[x] ∪ {p[x]},

• T[x] = T ∩ [x],

• F[x] = F ↾ (S[x] ∪ T[x])
2 ∪ {(p[x], t), (t, p[x]) | t ∈ T[x]},

• M0[x] = (M0 ↾ [x]) ∪ {p[x]}, and

• ℓ[x] = ℓ ↾ [x].

All components overlap at interfaces only, as the sole places not in an interface
are the newly created p[x]. The I[x] are disjoint as the equivalence classes [x]
are, so (N ′, I ′, O′) := ‖[x]∈(S∪T )/D(N[x], O[x], I[x]) is well-defined. It remains to
be shown that N ′ ≈∆

bSTb N . The elements of N ′ are exactly those of N plus the
new places p[x], which stay marked continuously except when a transition from
[x] is firing, and never connect two concurrently enabled transitions.

As we cannot have concurrently firing visible transitions on a single location,
|U ∩ [x]| ≤ 1 for any reachable ST-marking (M,U) of N and any x ∈ S ∪T , i. e.
for any location [x]. Here U is the multiset representation of the sequence U ,
defined in Section 2.2. The relation

{

((M,U), (M∪SU , U))

∣

∣

∣

∣

(M,U) is a reachable ST-marking of N,
SU = {p[x] | U∩[x] =∅}

}

is a bijection between the reachable ST-markings of N ′ and N that preserves
the ST-transition relations between them. In particular, if (M,U)

τ
−→ (M ′, U ′),

using a silent transition that belongs to the equivalence class [x], then U ′ = U
and U∩[x]=∅, i. e. no transition at location [x] is currently firing, using thatN is
essentially distributed. Hence p[x] ∈ SU and thus (M∪SU , U)

τ
−→ (M ′∪SU , U).

(This argument does not extend to externally distributed nets N .) From this it
follows that N ′ ≈∆

bSTb N . �

Example 2 In Figure 5.1 appears an example of an essentially distributed net;
the location borders are indicated. This net is not distributed, and thus not
an LSGA net, because the two topmost τ -transitions are co-located but can be
fired concurrently. Applying the construction in the proof of Theorem 3 turns
this net into the distributed net of Figure 3.2.

Likewise, up to ≈F any externally distributed net can be converted into a
distributed net.

Proposition 4 [GGS08a] For any externally distributed net N there is a dis-
tributed net N ′ with N ′ ≈F N .

4Alternatively, we could take I[x] := (T\[x])• ∩ [x].
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at b u c v

τ

τ

τ

τ

Figure 3.2: The LSGA net obtained from converting the essentially distributed
net of Figure 5.1.

Proof: The same construction applies. The relation

{

(M,M∪S) |M is a reachable marking of N, S = {p[x] | [x] is a location}
}

is a bijection between the reachable markings of N ′ and N that preserves the
step transition relations between them. Here we use that the transitions in the
associated LTS involve either a multiset of concurrently firing visible transitions
(that all reside on different locations and thus do not share a preplace p[x]), or
a single internal one. It follows that N ′ ≈F N . �

p q

a t b u τ
v r

c
w

Figure 3.3: Externally distributed, but not convertible into a distributed net up
to ≈∆

bSTb.

p q

at b u τ
v r

c
w

Figure 3.4: The LSGA net obtained from converting the externally distributed
net of Figure 3.3.
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Example 3 Figure 3.3 shows an externally distributed net; the (canonical)
location borders are dotted. It is not essentially distributed, because the tran-
sitions t and v are co-located but can be fired concurrently, while ℓ(t) 6= τ .
Applying the construction in the proof of Proposition 4 turns this net into the
step failures equivalent LSGA net of Figure 3.4.

The counterexample in Figure 3.3 shows that up to ≈∆
bSTb not all externally

distributed nets can be converted into distributed nets. Sequentialising the
component with actions a, b and τ (as happens in Figure 3.4) would disable the

execution
a+

−→
τ
−→

∗ c+
−→.



Chapter 4

N-Free Nets and Related
Classes

The potentially problematic nature of Ns was known long before we started
our research. Hence a non-trivial subclass of nets – free choice nets – was
identified, which disallowed Ns, gaining more efficient analysis algorithms in
return. Theorem 2 provides a concrete and formal reason to dislike Ns on top
of these earlier concerns. Naturally, we wished to gain a better understanding
of the relationship between free choice nets and the various existing extensions
thereof, and our class of symmetrically asynchronous nets.

This chapter presents the resulting joint work with Stephan Mennicke, pub-
lished in [MSUG14].

4.1 Free-Choice and Extended Free-Choice

Free-choice nets (FC-nets) are generalizations of S-nets and T-nets, both rep-
resenting net classes providing efficient analysis algorithms, e. g. for liveness
or boundedness [Bes87, DE95, Esp98, BW13]. FC-nets allow choices between
transitions, but only if there is at most one place in the preset of the con-
flicting transitions (Figure 4.1 (a)), and synchronization of places, but only in

t1 t2 . . . tn

(a)

. . .

t

(b)

Figure 4.1: The two net principles allowed in FC-nets.
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t u

(a)

t u

(b)

t u v

(c)

Figure 4.2: Three nets that are not FC-nets.

the way that there is at most one transition in the postset of the synchronized
places (Figure 4.1 (b)). The conflict pattern refers to restrictions imposed on
S-nets, while the synchronization pattern follows restrictions as imposed on T-
nets. Hence, every time a conflict occurs, it occurs between the same set of
transitions and it is not influenced by the rest of the net.

Definition 39 A net N = (S, T, F,M0, ℓ) is a free-choice net (FC-net) iff

∀p ∈ S ∀t ∈ T. F (p, t) > 0⇒ ∃k ∈ N.p• = k · {t} ∨ •t = k · {p}.

Observation 11 A net N = (S, T, F,M0, ℓ) without arc weights is free-choice
iff ∀p ∈ S ∀t ∈ T. p ∈ •t⇒ p• = {t} ∨ •t = {p}. �

FC-nets come with a natural notion of distributed component, called free-choice
cluster. Given an FC-net N = (S, T, F,M0, ℓ), the free-choice cluster of a tran-
sition t ∈ T is the conflict cluster of t, i. e. [t] = {u | u ∈ (•t)•}. The set of all
conflict clusters and thus free-choice clusters of N , denoted by C(N), imposes a
partitioning on the set of transitions if N is an FC-net. Thus, a free-choice clus-
ter may be seen as a component of a system N . Note that each component has
at most one role, either to resolve a conflict between actions or to synchronise
parallel components. Each component C ∈ C(N) is equipped with interfaces •C
(the set of input places) and C• (the set of output places). If some of the places
of a component belong to the initial marking, these places are initially marked
in the component. Hence, FC-nets are expressive enough to describe non-trivial
distributed behaviour by a combination of locally restricted choices and synchro-
nization. As already motivated, FC-nets excel in a wide range of applications,
mostly due to their structural properties implying semantic properties. For a
comprehensive overview, we refer to [Bes87, BW13]. Unfortunately, not every
net is an FC-net (Figure 4.2). However, if a net is behaviourally equivalent to an
FC-net, analysis results on the transformed net enables us to (partially) reason
about semantic properties of the original net.

The net depicted in Figure 4.2 (b) belongs to the class of extended free-
choice nets (EFC-nets). EFC-nets are characterized by the property that if two
transitions share any place in their preset, then they share all preplaces. Thus,
these nets exhibit the free-choice property to a certain extent, as conflicting
transitions always depend on the same set of places.
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τ

t u

(a)

t u v

(b)

Figure 4.3: Transformation to FC-nets and EFC-nets, respectively.

Definition 40 A net N = (S, T, F,M0, ℓ) is an extended free-choice net iff
∀t1, t2 ∈ T.•t1 ∩ •t2 6= ∅ ⇒ •t1 = •t2.

Furthermore, we observe that the clustering described for FC-net transitions
also works in EFC-nets, i. e. C(N) of an EFC-net N is a partition on the set
of transitions of N . Therefore, we call a conflict cluster of an EFC-net EFC-
cluster. Note that every FC-net is also an EFC-net, but the converse does not
hold in general. However, Best and Shields proved that there is a behavioural
correspondence by showing that EFC-nets may be transformed into FC-nets,
respecting a form of interleaving simulation [BS83].

The core idea of that transformation is to split an EFC-cluster C ∈ C(N)
into two operational parts, (i) a synchronization of all input places of C and
(ii) a choice between all transitions in C. For (i), an unobservable transition is
added, consuming the tokens from each input place of C and producing a token
to an additional place pC . In part (ii), all the transitions in C consume from
pC .

An example transformation, namely from the EFC-net in Figure 4.2 (b)
into the corresponding FC-net is depicted in Figure 4.3 (a). Formally, the
transformation is defined as follows [BS83, Bes87].

Definition 41 Let N = (S, T, F,M0, ℓ) be an EFC-net. We then define
FC(N) := (S′, T ′, F ′,M0, ℓ

′) where

S′ = S ∪ {p[u] | [u] ∈ C(N)}
T ′ = T ∪ {τ[u] | [u] ∈ C(N)}

F ′(x, y) =































F (x, y) if x ∈ T ∧ y ∈ S

F (x, u) if ∃u ∈ T.x ∈ S ∧ y = τ[u]

1 if ∃u ∈ T.x = τ[u] ∧ y = p[u]

1 if y ∈ T ∧ x = p[y]

0 otherwise

ℓ′(t) =

{

ℓ(t) if t ∈ T

τ otherwise

Following [BS83], FC(N) is an FC-net simulating N if N is an EFC-net. The
nature of the equivalence used in [BS83] however is not precisely specified. It



50 CHAPTER 4. N-FREE NETS AND RELATED CLASSES

can be argued that this transformation from EFC-nets to FC-nets preserves
branching time as well as causality, but disregards concurrency.

Let us now determine if EFC-nets remain equivalent to FC-nets when con-
sidering concurrency-aware equivalences. In EFC-nets, two transitions can only
fire in a step if they do not share any preplace. Furthermore, the transformation
defined above preserves conflict clusters in the sense that C(N) ⊆ C(FC(N)).
Hence, if two transitions are concurrent in N , they still are so in FC(N). For-
mally, the transformation function FC enjoys the property that an EFC-net
N and FC(N) are weak step bisimilar. The weak version of the equivalence
is necessary, as FC introduces τ -transitions that do not belong to the original
unlabelled EFC-net.

Theorem 4 Let N be an unlabelled, finitary EFC-net. Then N ≈B FC(N).

Proof: Let N = (S, T, F,M0, ℓ) be an unlabelled, finitary EFC-net and N ′ =

FC(N) = (S′, T ′, F ′,M ′0, ℓ
′). We prove R = {(M1,M2) | M1 ∈ [N〉,M1

τ
−→

∗

N ′

M2} to be a weak step bisimulation. Note that S ⊆ S′ and T ⊆ T ′. Let
(M1,M2) ∈ R. We need to check the following cases:

1. (M0,M
′
0) ∈ R, as M0 = M ′0.

2. M1
A
−→N M ′1, i. e. M1[G〉NM ′1 and ℓ(G) = A. We also have M1

τ
−→

∗

N ′ M2

By Definition 41 for all t ∈ T we have ◦τ[t] =
•t, τ[t]

◦ = ◦t, and t◦ = t•.
As the only τ -labelled transitions are of the form τ[t] we conclude M2 =
M1+J

∑

t∈H{τ[t]}K for someH ∈ NT . If (G∪H)−H = ∅ we takeM ′′2 = M2,
otherwise there is a M ′′2 with M2[

∑

t∈(G∪H)−H{τ[t]}〉N ′M ′′2 . In either case

M ′′2 [G〉N ′M ′2. And M ′1[
∑

t∈(G∪H)−G{τ[t]}〉N ′M ′2 or (G ∪H)−G = ∅ and

M ′1 = M ′2. That M2
τ
−→

∗

N ′

A
−→N ′ M ′2 and M ′1

τ
−→

∗

N ′ M ′2 follows.

3. M1
τ
−→N M ′1. As N is unlabelled, this case cannot occur.

4. M2
A
−→N ′ M ′2, i. e. M2[G〉N ′M ′2 and ℓ(G) = A. We take M ′1 = M1+ JGKN

and need to show that M1
A
−→N M ′1 and (M ′1,M

′
2) ∈ R.

As before, we find M2 = M1 + J∑t∈H{τ[t]}KN ′ for some H ∈ NT , which
implies ◦

∑

t∈H{τ[t]} ≤ M1. As ◦G =
∑

t∈G{p[t]} and no p[t] exist in
M1, we find G ≤ H . As ◦

∑

t∈G{τ[t]} = •G by the net construction,
•G ≤ M1 and M1[G〉NM ′1. Then ◦

∑

t∈(G+(H−G)){τ[t]} ≤ M1 gives •G +
◦
∑

t∈(H−G){τ[t]} ≤M1 and ◦
∑

t∈(H−G){τ[t]} ≤M1− •G+G• and hence

M1[G〉NM ′1[
∑

t∈(H−G){τ[t]}〉N ′M ′′2 for some M ′′2 . That M
′′
2 = M ′2 follows

from J∑t∈H{τ[t]}+GKN ′ = JGKN +J∑t∈(H−G){τ[t]}KN ′ which can be seen

from the net construction. Hence (M ′1,M
′
2) ∈ R.

5. M2
τ
−→N ′ M ′2. Trivially M1

τ
−→

∗

N M1 and (M1,M
′
2) ∈ R.

Hence, R is a weak step bisimulation between N and FC(N).
�
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The proof of this theorem relies on the observation that the markings of
N are also markings of FC(N). The only difference is that the construction
introduces some new places, one per EFC-cluster, that only hold a token if their
preceding τ -transition has fired.

In conclusion, all EFC-nets can be simulated by FC-nets under concurrency-
aware equivalences, using the well-known transformation. Intuitively, this paves
the way for FC-net-based analysis for distributed systems being specified by
EFC-nets. In the following section, we try to repeat this result for behavioural
free-choice nets (BFC-nets). Unfortunately, not all BFC-nets exhibit (step)
behaviour that may be expressed by an equivalent FC-net.

4.2 Behavioural Free-Choice

Free-choice may also be explored as a behavioural notion. The net in Figure 4.2
(c) is neither an FC-net nor an EFC-net. However, in every reachable marking,
conflicting transitions t and u as well as u and v are either enabled or disabled.
Although not all conflicting transitions depend on exactly the same resources,
the initial conflict situation remains invariant. Once again, this meets the intu-
ition of free-choice. This observation is the basis for behavioural free-choice nets
(BFC-nets).

Definition 42 Let N = (S, T, F,M0, ℓ) be a net. It is a behavioural free-choice
net (BFC-net) if

∀t, u ∈ T.•t ∩ •u 6= ∅ ⇒ ∀M ∈ [N〉.M [{t}〉 ⇔M [{u}〉 .

Every EFC-net is a BFC-net and thus every FC-net is also a BFC-net (as already
[BS83] noted). However, for BFC-nets, the conflict clustering does not provide
the property that C(N) partitions the set of transitions, e. g. the net depicted
in Figure 4.2 (c) has two overlapping conflict clusters, namely {t, u} and {u, v}.
By merging those overlapping clusters, we reach a partitioning of the set of
transitions, called BFC-clusters where 〈u〉 denotes the BFC-cluster of u. Thus,
transitions in a BFC-cluster do not necessarily share all of their preplaces, e. g.
t and v in Figure 4.2 (c) belong to the same BFC-cluster but •t ∩ •v = ∅.
However, the BFC-net property ensures that, e. g. in Figure 4.2 (c), both t and
v are enabled as long as u does not fire.

In Figure 4.4 (a), another BFC-net is depicted. As before, either all tran-
sitions of the BFC-cluster 〈t〉 are enabled or disabled. Thus, without changing
the (step) behaviour of the BFC-net, we may make each transition t dependent
on all places in •〈t〉. In order to preserve the markings of the original net, each
additional arc is complemented by an arc in the opposite direction. For the
net in Figure 4.4 (a) we get the EFC-net depicted in Figure 4.4 (b). The same
implementation idea applied to the BFC-net in Figure 4.2 (c) yields the EFC-
net depicted in Figure 4.3 (b). For BFC-nets, the result of this construction is
always an EFC-net that is interleaving branching time equivalent to the original
net [Bes87]. Thus, by performing the FC-net construction described in Sect. 4.1,
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Figure 4.4: From BFC-nets to FC-nets.

we get an FC-net that is at least interleaving branching time equivalent to the
original BFC-net.

Definition 43 Let N = (S, T, F,M0, ℓ) be a net. We define a helper function
α : S × T → N as

α(s, t) := max
u∈〈t〉

•u(s) .

Using α we define EFC(N) := (S, T, F ′,M0, ℓ) where

F ′(x, y) :=

{

α(x, y) if x ∈ S ∧ y ∈ T

α(y, x) − F (y, x) + F (x, y) if x ∈ T ∧ y ∈ S

In Figure 4.4, we depicted all intermediate translation steps finally yielding the
FC-net depicted in Figure 4.4 (c), which is indeed weak step bisimilar to the
BFC-net in Figure 4.4 (a). Unfortunately, the EFC-net depicted in Figure 4.3
(b) is not weak step bisimilar to the net in Figure 4.2 (c), as the formerly concur-
rent transitions t and v are now conflicting. Hence, the proposed construction
from the literature does not respect weak step bisimilarity.

In general, there is no transformation from the net in Figure 4.2 (c) into a
step branching time equivalent (E)FC-net. This is due to the pattern, called
pure M, the net contains, which will be properly introduced in Chapter 5 and
shown to be stable under step branching time equivalences in Theorem 8. A
pure M is characterized by three distinct transitions, t, u, v with •t ∩ •u 6= ∅,
•u∩ •v 6= ∅, and •t∩ •v = ∅ such that there is a reachable marking under which
all three transitions are enabled. Thus, transitions t and v may fire concurrently
while the synchronizing transition u is in conflict with both.

Obviously, the containment of pure Ms is no necessary condition for a net
to be a BFC-net, e. g. the BFC-net in Figure 4.4 (a) does not even have three
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transitions. Therefore, we devise two subclasses of BFC-nets that do not have
pure Ms in the following. First, we restrict BFC-nets to those nets that do not
have self-loops. Second, we look at the intersection of BFC-nets and so called
asymmetric choice nets in which self-loops are allowed. See again [Bes87] for
an overview on asymmetric choice nets. Both subclasses turn out to be step
branching time equivalent to FC-nets.

4.2.1 BFC-nets without Self-Loops

In this section, we briefly discuss pure Ms in BFC-nets without self-loops. A
self-loop is constituted by a transition t and a place p such that t consumes from
and produces to p.

Definition 44 A net N = (S, T, F,M0, ℓ) has a self-loop iff ∃p ∈ S.•p∩ p• 6= ∅.

If we now consider BFC-nets without any self-loops, we need to reassess our
argumentation above on why BFC-nets are not equivalent to FC-nets. Without
a self-loop, a pure M is not expressible, because if t or v fired without returning
the token to their preplaces they share with u, the overall net would not obey the
BFC-net property. Indeed, the construction known from the literature works
for BFC-nets without self-loops, proving that BFC-nets without self-loops are
step-branching equivalent to (E)FC-nets.

Theorem 5 Let N = (S, T, F,M0, ℓ) be an unlabelled BFC-net without self-
loops. Then EFC(N) ≈∆

B N .

Proof: We take R := {(M,M) |M ∈ [M0〉} and show it to be a weak step bisi-
mulation with explicit divergence between N = (S, T, F,M0, ℓ) and EFC (N) =
(S, T, F ′,M0, ℓ). We use • to denote pre- and postsets in N and ◦ when refering
to EFC (N).

1. Clearly M0 R M0.

2. Let M
A
−→N M ′. Then ∃G ∈ NT .ℓ(G) = A∧M ≥ •G∧M ′ = M−•G+G•.

Take any t ∈ G, s ∈ •t. From the construction of EFC (N) we find that

t•(s)− •t(s) = F (t, s)− F (s, t)

= F (t, s)− F (s, t) + α(s, t)− α(s, t)

= (α(s, t)− F (s, t) + F (t, s))− α(s, t)

= t◦(s)− ◦t(s)

Hence M ′ = M − ◦G+G◦ and we just need to show that M ≥ ◦G.

Assume the contrary. Then there is some place s ∈ S with M(s) < ◦G(s).
First, consider individual t ∈ s◦ and assume M(s) < ◦t(s) = α(s, t). By
definition of α then there must exists u ∈ 〈t〉 such that α(s, t) = •u(s) >
M(s). However, since N is a behavioural free choice net and M [{t}〉N all
u ∈ 〈t〉 also have M [{u}〉 and thereby •u(s) ≤M(s). Hence there must be
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Figure 4.5: Two AC-nets having a partially and fully reachable N.

a non-singleton multiset G′ of transitions from s◦ such that M(s) < ◦G′(s)
yet •G′ ≤ M . Then at least two transitions t, u ∈ G′, t 6= u exist with
u ∈ 〈t〉. But from M [{u, t}〉 follows M [{u}〉M ′′ for some M ′′ and as N
is behavioural free choice and t stays enabled, M ′′[{u, t}〉. This implies u
can be fired infinitely often, yet this is only possible if u has a self-loop,
contradicting the assumptions.

3. As N is unlabelled, ¬M
τ
−→N .

4. Let M
A
−→EFC (N) M ′. Then ∃G ∈ NT .ℓ(G) = A ∧ M ≥ ◦G ∧ M ′ =

M − ◦G + G◦. Using the equations from 2. above M ′ = M − •G + G•,
i. e. we are left to show that M ≥ •G. Using the definition of α, ◦G ≥ •G
and the claim follows.

5. As N and thereby EFC (N) is unlabelled, ¬M
τ
−→EFC (N).

6. As N is unlabelled, ¬M
τ
−→N .

7. As N and thereby EFC (N) is unlabelled, ¬M
τ
−→EFC (N).

�

Next, we discuss a subclass that allows self-loops in BFC-nets but restricts the
class structurally to not contain Ms.

4.2.2 BFC-nets and Asymmetric Choice

The condition for a net to be an EFC-net may be reformulated in terms of
places, yielding exactly the same net class as by Definition 40 [Bes87]. In this
definition, a net is an EFC-net iff for all places p and q it holds that p• ∩ q• 6= ∅
implies that p• = q•. In an asymmetric choice net (AC-net), this restriction
is weakened to an alternative between the two set-inclusions between p• and
q•. Before discussing the combination of BFC-nets and AC-nets, we clarify the
relation between AC-nets and FC-nets.

Definition 45 A netN = (S, T, F,M0, ℓ) is an asymmetric choice net (AC-net)
iff

∀p, q ∈ S.p• ∩ q• 6= ∅ ⇒ p• ≤ q• ∨ q• ≤ p•.
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This restriction hardly enforces the concepts of free-choice, as it does not re-
quire conflicting transitions to be chosen freely. However, the net depicted in
Figure 4.2 (a) shows an example AC-net, which may be simulated by an FC-
net. We discuss this transformation in Sect. 4.3. Considering the same net in
a larger context, it is unclear whether a token eventually occurs on the second
input place of u. The AC-net in Figure 4.5 (a) shows an example context. The
choice between transitions t and u does only occur if transition x fires in ad-
vance. In an adversary scenario, transition x might only fire if transition t has
fired, which makes u unable to fire at all. In the literature, such a situation is
called (asymmetric) confusion [RT86], which may not be simulated by any FC-
net, as choices may never occur conditionally. In general, we characterise such
conditional choices by the notion of partially and fully reachable Ns. Here, the
existence of a subnet like the one in Figure 4.2 (a) is expected and two distinct
markings, one under which t is enabled and one enabling t and u.

Definition 46 1 Let N = (S, T, F,M0, ℓ) be a net. (t, u) ∈ T 2 is a partially
and fully reachable N iff ∃p ∈ •t ∩ •u ∧ ∃q ∈ •u, q 6= p, and ∃Mt,M ∈ [N〉.•t ≤
Mt ∧

•u 6≤Mt ∧
•t ≤M ∧ •u ≤M .

Note that this notion does not only characterise asymmetric confusion patterns,
but also nets as the one depicted in Figure 4.5 (b). Just as in the case of
pure Ms, partially and fully reachable Ns are stable w. r. t. step branching time
equivalences.

Proposition 5 Let N be an unlabelled, finitary structural conflict net with a
partially and fully reachable N. Then for all plain nets N ′ with N ≈F N ′ it
holds that N ′ has a partially and fully reachable N.

Proof: Let N = (S, T, F,M0, ℓ) and (t, u) a partially and fully reachable N of
N . Then there exist reachable markings Mt and M such that Mt enables t,
but not u and M enables both. Thus, there is a σ such that M0

σ
=⇒ Mt and

since N is unlabelled, and hence deterministic [VN82], (1) (σ,X) ∈ F(N) ⇒
{ℓ(t)} 6∈ X and (2) (σ,X) ∈ F(N) ⇒ {ℓ(u)} ∈ X . From the existence of

M we deduce that there is a σ′ such that M0
σ′

=⇒ M and by determinism (3)
(σ′, X ′) ∈ F(N)⇒ {ℓ(t)} 6∈ X ′∧{ℓ(u)} 6∈ X ′. As N is a structural conflict net,
(4) also (σ′, X ′) ∈ F(N)⇒ {ℓ(t), ℓ(u)} ∈ X ′.

Let N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be a net with N ≈F N ′, i. e. F(N) = F(N ′).

Therefore, F(N ′) obeys (1)–(4). Hence, there exist transitions t′, u′ ∈ T ′ with
ℓ′(t′) = ℓ(t) and ℓ′(u′) = ℓ(u). By (3) and (4), we have some p ∈ •t′ ∩ •u′. By
(1) and (2), we get that there is a place q ∈ •u′ \ •t′. By (1), there is a marking

Mt′ with M ′0
σ

=⇒ Mt′ and
•t′ ≤ Mt′ ∧ •u′ 6≤ Mt′ , as otherwise there would be

a failure pair (σ,X) ∈ F(N ′) with {ℓ′(t′)} ∈ X . By (3), there is a marking M ′

with M ′0
σ′

=⇒M ′ with •t′ ≤M ′ ∧ •u′ ≤M ′. By (4) {t′, u′} is no step from M ′.
Summarizing, N ′ has a partially and fully reachable N. �

1Note that partial reachability differs from how it is defined in Definition 30 where we
don’t care whether u is enabled. Hence the concept defined here is related, but maybe less so
than suggested by its name.
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Corollary 3 For some unlabelled finitary structural conflict AC-net, there exist
no weak step failures equivalent plain FC-net.

However, the BFC-net in Figure 4.2 (c) does not respect the restrictions as
imposed on AC-nets. In general, such structures may not occur in an AC-net
and conversely, partially and fully reachable Ns are ruled out in BFC-nets, which
paves the way for the following theorem.

Theorem 6 Let N be an unlabelled, finitary structural conflict BFC-net and
an AC-net. Then EFC(N) ≈∆

B N .

Proof: Let N = (S, T, F,M0, ℓ) be a BFC-AC-net specification and EFC(N) =
N ′ = (S, T, F ′,M0, ℓ). We prove that R = {(M,M) | M ∈ [N〉} is a weak
step bisimulation with explicit divergence between N and N ′. By definition,
(M0,M0) ∈ R. Let (M1,M2) ∈ R. The cases for τ -steps are obsolete, as
N and N ′ are unlabelled. We again employ the ◦ notation to denote pre-
/postconditions in N ′.

1. M1
A
−→N M ′1, i. e. there is a step G from M1 to M ′1 and ℓ(G) = A. As

N ′ is τ -free, we have to give a marking M ′2 such that M2
A
−→N ′ M ′2 and

(M ′1,M
′
2) ∈ R. If G is enabled by M2, then M ′2 = M ′1 where M2[G〉M

′
2,

as M2 = M1 and tokens that are consumed due to the construction of N ′

are reproduced. Additionally, the original outgoing arcs of transitions are
preserved. As N is a structural conflict net, for transitions t1, t2 ∈ G it
holds that •t1 ∩ •t2 = ∅. It remains to be shown that G is enabled by M2,
i. e. ◦G ≤ M2. Let t ∈ G. As F ′ ≥ F , it holds that |◦t| ≥ |•t|. In case of
equality t may fire under M2. If |◦t| > |•t|, then there are places p, q ∈ S
and a transition u ∈ T such that p ∈ •t ∩ •u, q 6∈ •t but q ∈ •u – due
to the fact that N is an AC-net. Hence, in N ′ there is an additional arc
from q to t. As N is a BFC-net, t is enabled iff u is enabled and hence,
q ∈ M1. Thus, q ∈ M2. In conclusion ◦t ≤ M2 for arbitrary t ∈ G, hence
◦G ≤M2, i. e. G is enabled by M2 and may fire, producing a new marking
M ′2 with the properties described above.

2. M2
A
−→N ′ M ′2, i. e. there is a step G from M2 to M ′2 and ℓ(G) = A. N is

τ -free and therefore, we need to give a markingM ′1 such that M1
A
−→N M ′1

and (M ′1,M
′
2) ∈ R. As before, a t in N has less or equal incoming arcs

than t in N ′. As, M2 = M1 by definition of R, G is a step from M1 to
a marking M ′1. Every token that is consumed by some t in N ′, due to
the construction of N ′, is reproduced in N ′. In N such tokens are not
even consumed by t. The original postsets of transitions are preserved
and hence, M1[G〉NM ′1 and M ′2 = M ′1 thus (M ′1,M

′
2) ∈ R. �

Note that Best and Shields already prove that EFC yields an EFC-net for
BFC-nets [BS83], but for interleaving branching time only.

In [AKD98], Wil van der Aalst, Ekkart Kindler and Jörg Desel also introduce
two extensions to asymmetric choice nets (called extended simple nets therein),
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by allowing self-loops to ignore the discipline imposed by the asymmetric choice
requirement. This however assumes a kind of “atomicity” of self-loops, which
we did not allow in this thesis. In particular we do not implicitly assume that a
transition will not change the state of a place it is connected to by a self-loop,
since in case of deadlock, the temporary removal of a token from such a place
might not be temporary indeed.

4.3 Symmetric Asynchrony

Throughout the last section, we have seen two subclasses of BFC-nets that are
step branching time equivalent to FC-nets. However, BFC-nets do not represent
a reasonable basis for the step branching time closure of FC-nets, as there are
non-BFC-nets being behaviourally equivalent to FC-nets, e. g. the net depicted
in Figure 4.2 (a).

In this section, we finally analyse the relation between symmetrically asyn-
chronous nets and FC-nets, which we first conjectured in [GGS08c]. Given
a symmetrically asynchronous net N = (S, T, F,M0, ℓ), there is a symmetrical
distribution λ : S∪T → L such that N has no distributed conflict w. r. t. λ. We
transform N under λ by FCsym(N) = (S, T ′, F ′,M0, ℓ) where

• T ′ := {t ∈ T | t is live∧∀p ∈ •t∀u ∈ p•, u is live.λ(p) = λ(u)∨u = t}, and

• F ′(x, y) := F (x, y) ↾ (S × T ′ ∪ T ′ × S).

This transformation yields an FC-net by removing transitions obstructing the
FC-net properties.

Lemma 9 Let N be a symmetrically asynchronous net. Then, FCsym(N) is an
FC-net.

Proof: Let N = (S, T, F,M0, ℓ) be a symmetrically asynchronous net and λ
the required symmetrical distribution.

Let N ′ = FCsym(N) with set of transitions T ′ and arc relation F ′. We use
◦ to denote pre- and postsets in N ′ and show that for all p ∈ S and all t ∈ T ′,
(p, t) ∈ F ′ implies ∃k ∈ N.◦t = k · {p} ∨ p◦ = k · {t}.

Assume there is a place p and a transition t with (p, t) ∈ F ′, but ∄k ∈ N.◦t =
k ·{p}∨p◦ = k ·{t}. Then, there exists a place q 6= p with q ∈ ◦t and a transition
u ∈ T ′ with t 6= u and u ∈ p◦. By construction ◦t ≤ •t ∧ ◦p ≤ •p. As λ is
symmetrical, λ(q) 6= λ(p) 6= λ(t), λ(u) 6= λ(q) 6= λ(t), and hence λ(t) 6= λ(u)
(cf. Definition 25). There are two cases to consider, (1) λ(p) = λ(u) and (2)
λ(p) 6= λ(u).

(1): t ∈ T ′ hence t is live. As p ∈ ◦u ≤ •u and t ∈ p◦ ≤ p• and t 6= u
and λ(t) 6= λ(p) the definition of T ′ ensures u 6∈ T ′, contradicting a previous
conclusion.

(2): u ∈ T ′ hence u is live. As u ∈ p◦ ≤ p• and p ∈ ◦t ≤ •t and t 6= u and
λ(u) 6= λ(p) the definition of T ′ ensures t 6∈ T ′, contradicting (p, t) ∈ F ′.

As in any case a contradiction is reached, (p, t) ∈ F ′ indeed implies ∃k ∈
N.◦t = k · {p} ∨ p◦ = k · {t}. Thus, FCsym(N) is an FC-net. �
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Fortunately, none of the removed transitions takes part in actual behaviour, as
all of them are dead transitions, i. e. there is no reachable marking enabling
them.

Lemma 10 Let N = (S, T, F,M0, ℓ) be a symmetrically asynchronous net and
FCsym(N) = (S, T ′, F ′,M0, ℓ). Then for all t ∈ T \ T ′ there is no M ∈ [M0〉N
such that M [{t}〉.

Proof: Assume there is a t ∈ T \ T ′ and a marking M ∈ [M0〉N such that t is
enabled under M . By definition of T ′, there is a p ∈ •t and a u ∈ p• such that
u is live, λ(p) 6= λ(u), and u 6= t. As M enabled t, we have •t ≤ M . Consider
two cases: •t(p) > •u(p) and •t(p) ≤ •u(p).

Case •t(p) > •u(p): As M enabled t, we have •t ≤M∧•u(p) ≤ •t(p) ≤M(p)
and with via integer arithmetic we find an l such that l · •u(p) ≤M(p)∧ •t(p) 6≤
M(p)− l · •u(p), i. e. that a distributed conflict of N exists.

Case •t(p) ≤ •u(p): As u is live, there must be some M ′ with M ′[{u}〉N .
Hence we have •u ≤ M ′ ∧ •t(p) ≤ •u(p) ≤ M ′(p) and via integer arithmetic
we find an l such that l · •t(p) ≤ M ′(p) ∧ •u(p) 6≤ M ′(p) − l · •t(p), i. e. that a
distributed conflict of N exists. �

Hence, FCsym yields step branching time equivalent FC-nets.

Theorem 7 Let N be an unlabelled symmetrically asynchronous net. Then
N ≈∆

B FCsym(N).

This theorem follows from Lemma 10 and the observation that dead transitions
can be removed from a net without changing behaviour. As every FC-net is
also symmetrically asynchronous, we get the following correspondence between
the step branching time closure of FC-nets and of symmetrically asynchronous
nets.

Corollary 4 Let N be an unlabelled net. N is weak step bisimilar with explicit
divergence to a plain FC-net iff N is weak step bisimilar with explicit divergence
to a plain symmetrically asynchronous net.

4.4 Short Overview of the Results So Far

The results above give rise to the lattice in Figure 4.6, which concludes this
chapter.
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Figure 4.6: Most relationships from Chapters 3 and 4.

SA : symmetrically asynchronous nets;
SA ≈∆

B : nets which are weakly bisimilar to nets in SA;
FC : free choice nets;

EFC : extended free choice nets;
FC ≈∆

B : nets which are weakly bisimilar to nets in FC ;
AC : asymmetric choice nets;

BFC : behaviourally free choice nets;
BFC ∅ : . . . without self loops;

pfN-free : nets without partially and fully reachable Ns.
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Chapter 5

M-Free Nets and Related
Classes

A step up from Ns are Ms, which will be the focus of the following chapter,
repeating our work published in [GGSU13]. While Theorem 2 talks about left
and right border reachable Ms, it will turn out that a different variant of Ms –
fully reachable Ms – are in fact the more fundamental structure.

5.1 Reachable-M Free

In this chapter we consider nets as specifications of concurrent systems and ask
the question which of those specifications can be implemented as distributed
systems. This question can be formalised as

Which nets are semantically equivalent to distributed nets?

Of course the answer depends on the choice of a suitable semantic equivalence.
We will focus our attention to structural conflict nets and for them give a

precise characterisation of those for which we can find semantically equivalent
distributed nets. For the negative part of this characterisation, stating that cer-
tain nets are not distributable, we will use step failures equivalence, which is one
of the simplest and least discriminating equivalences imaginable that abstracts
from internal actions, but preserves branching time, concurrency and divergence
to some small degree.1 Giving up on any of these latter three properties would
make any net distributable, but in a rather trivial and unsatisfactory way:

• Every net can be converted into an essentially distributed net by refining

every transition
a

into the net segment
τ a

.

1In [GGSU11] we used step readiness equivalence, a slightly more discriminating equiva-
lence with roughly the same properties. By moving to step failures equivalence we strengthen
our result.

61
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a t b u c v

τ

τ

τ

τ

Figure 5.1: A busy-wait implementation of the net in Figure 5.2, location bor-
ders dotted.

This construction appears in [BD12] where it is criticised for putting
“all relevant choice resolutions” on one location. The construction does
not introduce or remove concurrency or divergence. So it preserves even
causality respecting linear time equivalences like pomset trace equivalence
[GG01]. It does not preserve branching time equivalences, because a choice
between two visible transitions a and b in the original net is implemented
by a choice between two internal transitions preceding a and b. The re-
sulting net is essentially distributed because all new τ -transitions can be
placed on the same location, whereas all other transitions get allocated a
location of their own. Hence, using Theorem 3, it can be converted into
an equivalent distributed net.

• When working in interleaving semantics, any net can be converted into
an equivalent distributed net by removing all concurrency between transi-
tions. This can be accomplished by adding a new, initially marked place,
with an arc to and from every transition in the net.

• When fully abstracting from divergence, even when respecting causality
and branching time, the net of Figure 5.2 is equivalent to the essentially
distributed net of Figure 5.1, and in fact it is not hard to see that this
type of implementation is possible for any given net. Yet, the implemen-
tation may diverge, as the non-deterministic choices might consistently be
decided in an unhelpful way. This argument is elaborated in Section 5.1.1
below. The clause M

τX−→ in Definition 11 is strong enough to rule out this
type of implementation, even though our step failures semantics abstracts
from other forms of divergence.

For the positive part, namely that all other nets are indeed distributable, we will
use the most discriminating equivalence for which our implementation works,
namely branching ST-bisimilarity with explicit divergence, which is finer than
step failures equivalence. Hence we will obtain the strongest possible results
for both directions and it turns out that the concept of distributability is fairly
robust w.r.t. the choice of a suitable equivalence: any equivalence notion between
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step failures equivalence and branching ST-bisimilarity with explicit divergence
will yield the same characterisation.

Definition 47 A net N ′ is distributable up to an equivalence ≈ iff there exists
a distributed net N with N ≈ N ′.

Formally, we give our characterisation of distributability by classifying which
finitary unlabelled structural conflict nets can be implemented as distributed
nets, and hence as LSGA nets. In such implementations, we use invisible tran-
sitions. We study the concept “distributable” for unlabelled nets only, but in
order to get the largest class possible we allow non-plain implementations, where
a given transition may be split into multiple transitions carrying the same label.

5.1.1 Characterising Distributability

It is well known that sometimes a global protocol is necessary to implement
synchronous interactions present in system specifications. In particular, this
may be needed for deciding choices in a coherent way, when these choices require
agreement of multiple components. The simple net in Figure 5.2 shows a typical
situation of this kind. Independent decisions of the two choices might lead to
incorrect system behaviour. If p and q both decide to send their respective
tokens leftwards, a can fire, yet the token from q gets stuck as b never receives
a second token. Compared to the correct semantics, a firing of c after a is
missing. It can be argued that for this particular net there exists no satisfactory
distributed implementation that fully respects the reactive behaviour of the
original system: Transitions t and v are supposed to be concurrently executable
(if we do not want to restrict performance of the system), and hence reside on
different locations. Thus at least one of them, say t, cannot be co-located with
transition u. However, both transitions are in conflict with u.

As we use nets as models of reactive systems, we allow the environment of
a net to influence decisions at runtime by blocking some of the possibilities.
Equivalently we can say it is the environment that fires transitions, and this
can only happen for transitions that are currently enabled in the net. If the net
decides between t and u before the actual execution of the chosen transition, the
environment might change its mind in between, leading to a state of deadlock.
Therefore we work in a branching time semantics, in which the option to perform
t stays open until either t or u occurs. Hence the decision to fire u can only be
taken at the location of u, namely by firing u, and similarly for t. Assuming
that it takes time to propagate any message from one location to another, in no
distributed implementation of this net can t and u be simultaneously enabled,
because in that case we cannot exclude that both of them happen. Thus, the
only possible implementation of the choice between t and u is to alternate the
right to fire between t and u, by sending messages between them (cf. Figure 5.1).
But if the environment only sporadically tries to fire t or u it may repeatedly
miss the opportunity to do so, leading to an infinite loop of control messages
sent back and forth, without either transition ever firing.



64 CHAPTER 5. M-FREE NETS AND RELATED CLASSES

p q

a t b u c v

Figure 5.2: A fully reachable pure M.

Indeed such M-structures, representing interference between concurrency and
choice, turn out to play a crucial rôle for characterising distributability. To be
precise, it is only those Ms that are pure, i. e. don’t have extra arcs from their
places to their transitions besides those in Figure 5.2, and are fully reachable,
i. e. for which there exists a reachable marking enabling all three transitions at
the same time.

Definition 48 Let N = (S, T, F,M0, ℓ) be a net. N has a fully reachable visible
pure M iff
∃t, u, v ∈ T.•t ∩ •u 6= ∅ ∧ •u ∩ •v 6= ∅ ∧ •t ∩ •v = ∅ ∧ ℓ(t), ℓ(u), ℓ(v) 6= τ ∧
∃M ∈ [M0〉.

•t ∪ •u ∪ •v ≤M .

Note that Definition 48 implies that t 6= u, u 6= v and t 6= v.

Lemma 11 A net with a fully reachable visible pure M is not distributed.

Proof: Let N = (S, T, F,M0, ℓ) be a net that has a fully reachable visible
pure M, so there exist t, u, v ∈ T and p, q ∈ S such that p ∈ •t ∩ •u ∧ q ∈
•u∩ •v∧ •t∩ •v = ∅ and ∃M ∈ [M0〉.•t∪ •u∪ •v ≤M . Then t ⌣ v. Suppose N
is distributed by the distribution D. Then t ≡D p ≡D u ≡D q ≡D v but t ⌣ v
implies t 6≡D v.  �

We now give an upper bound on the class of distributable structural conflict
nets by adapting a result from [GGS08a]: We show that fully reachable visible
pure M’s that are present in an unlabelled structural conflict net are preserved
under step failures equivalence. In [GGS08a] we showed this for step readiness
equivalence.

Lemma 12 Let N = (S, T, F,M0, ℓ) be an unlabelled structural conflict net. If
N has a fully reachable visible pure M, then there are σ ∈Act∗ and a, b, c∈Act
with a 6= c, such that 〈σ, {{a, c}}〉, 〈σ, {{b}}〉 /∈F (N) and 〈σ, {{a, b}, {b, c}}〉 ∈
F (N). (It is implied that a 6= b 6= c.)

Proof: N has a fully reachable visible pure M, so there exist t, u, v ∈ T and
M ∈ [M0〉 such that •t∩ •u 6= ∅∧ •u∩ •v 6= ∅∧ •t∩ •v = ∅∧ •t∪ •u∪ •v ≤M .
Let σ ∈ Act∗ such that M0

σ
=⇒M . Let a := ℓ(t), b := ℓ(u) and c := ℓ(v),

Then M
{a,c}
−−−→ and M

{b}
−−→. Moreover, using that N is a structural conflict

net, M X {a,b}−−−→ and M X {b,c}−−−→. Since N is an unlabelled net, M
τX−→, and there

is no M ′ 6= M with M0
σ

=⇒ M ′. Hence 〈σ, {{a, c}}〉, 〈σ, {{b}}〉 /∈ F (N) and
〈σ, {{a, b}, {b, c}}〉 ∈ F (N). �
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Lemma 13 Let N = (S, T, F,M0, ℓ) be a structural conflict net. If there are
σ ∈ Act∗ and a, b, c ∈ Act with a 6= c, such that 〈σ, {{a, c}}〉, 〈σ, {{b}}〉 /∈ F (N)
and 〈σ, {{a, b}, {b, c}}〉 ∈ F (N), then N has a fully reachable visible pure M.

Proof: Let M ∈ NS be the marking that gives rise to the step failure pair

〈σ, {{a, b}, {b, c}}〉, i. e. M0
σ

=⇒M , M X {a,b}−−−→ and M X {b,c}−−−→. Since 〈σ, {{a, c}}〉 /∈
F (N), it must be that M

{a,c}
−−−→. Likewise, M

{b}
−−→.

As a 6= b 6= c 6= a there must exist three transitions t, u, v ∈ T with ℓ(t) =
a ∧ ℓ(u) = b ∧ ℓ(v) = c and M [{t, v}〉 ∧M [{u}〉 ∧ ¬(M [{t, u}〉) ∧ ¬(M [{u, v}〉).
From M [{t, v}〉∧M [{u}〉 it follows that •t∪ •u∪ •v ≤M and •t∩ •v = ∅, using
that N is a structural conflict net. From ¬(M [{t, u}〉) then follows •t ∩ •u 6= ∅
and analogously for u and v. Hence N has a fully reachable visible pure M. �

Note that the lemmas above give a behavioural property that for unlabelled
structural conflict nets is equivalent to having a fully reachable visible pure M.

Theorem 8 Let N be an unlabelled structural conflict net. If N has a fully
reachable visible pure M, then

1. any structural conflict net N ′ which is step failures equivalent to N has a
fully visible pure M, and hence

2. N is not distributable up to step failures equivalence.

Proof: (1): Let N be an unlabelled structural conflict net which has a fully
reachable visible pure M. Let N ′ be a net which is step failures equivalent to
N . By Lemma 12 and Lemma 13, also N ′ has a fully reachable visible pure M.

(2): By Lemma 11, N ′ is not distributed. Thus N is not distributable up to
step failures equivalence. �

Since ≈∆
bSTb is finer than ≈F , this result holds also for distributability up

to ≈∆
bSTb (and any equivalence between ≈F and ≈∆

bSTb).
In the following, we establish that the upper bound is tight, and hence

a finitary unlabelled structural conflict net is distributable iff it has no fully
reachable visible pure M.

For this, it is helpful to first introduce macros for reversibility of transitions.

5.1.2 Nets with Reversible Transitions

A net with reversible transitions generalises the notion of a net; its semantics
is given by a translation to an ordinary net, thereby interpreting the reversible
transitions as syntactic sugar for certain net fragments. It is defined as a tuple
(S, T,Ω, ı, F,M0, ℓ) with S a set of places, T a set of (reversible) transitions,
labelled by ℓ : T → Act

.
∪ {τ}, Ω a set of undo interfaces with the relation ı ⊆

Ω× T linking interfaces to transitions, M0 ∈ NS an initial marking, and

F : (S × T × {in, early, late, out, far} → N)
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Figure 5.3: A reversible transition and its macro expansion.

the flow relation. When F (s, t, type) > 0 for type ∈ {in, early, late, out, far}, this is
depicted by drawing an arc from s to t, labelled with its arc weight F (s, t, type),
of the form , , , , , respec-
tively. For t∈T and type ∈ {in, early, late, out, far}, the multiset of places ttype∈NS

is given by ttype(s) = F (s, t, type). When s ∈ ttype for type ∈ {in, early, late}, the
place s is called a preplace of t of type type; when s ∈ ttype for type ∈ {out, far},
s is called a postplace of t of type type. For each undo interface ω ∈Ω and tran-
sition t with ı(ω, t) there must be places undoω(t), resetω(t) and ackω(t) in S.
A transition with a non-empty set of interfaces is called reversible; the other
(standard) transitions may have pre- and postplaces of types in and out only –
for these transitions tin=•t and tout =t•. In case Ω = ∅, the net is just a normal
net.

A global state of a net with reversible transitions is given by a marking
M ∈ NS , together with the state of each reversible transition “currently in
progress”. Each transition in the net can fire as usual. A reversible transi-
tion can moreover take back (some of) its output tokens, and be undone and
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reset. (The actual use in our implementation will be that every reversible tran-
sition that fires is undone and reset later.) When a transition t fires, it con-
sumes

∑

type∈{in, early, late} F (s, t, type) tokens from each of its preplaces s and

produces
∑

type∈{out, far} F (s, t, type) tokens in each of its postplaces s. A re-
versible transition t that has fired can start its reversal by consuming a token
from undoω(t) for one of its interfaces ω. Subsequently, it can take back the
tokens from its postplaces of type far. After it has retrieved all its output of
type far, the transition is undone, thereby returning F (s, t, early) tokens in each
of its preplaces s of type early. Afterwards, by consuming a token from resetω(t),
for the same interface ω that started the undo-process, the transition terminates
its chain of activities by returning F (s, t, late) tokens in each of its late preplaces
s. At that occasion it also produces a token in ackω(t). Alternatively, two to-
kens in undoω(t) and resetω(t) can annihilate each other without involving the
transition t; this also produces a token in ackω(t). The latter mechanism comes
in action when trying to undo a transition that has not yet fired, and gives us
some flexibility when creating undoω(t) and resetω(t) tokens.

Figure 5.3 shows the translation of a reversible transition t with ℓ(t)=a into
an ordinary net fragment. The arc weights on the green (or grey) arcs are in-
herited from the untranslated net; the other arcs have weight 1. Formally, a net
(S, T,Ω, ı, F,M0, ℓ) with reversible transitions translates into the net containing
all places S, all standard transitions in T , labelled according to ℓ, along with
their pre- and postplaces, and furthermore all net elements mentioned in Ta-
ble 5.1, T← denoting the set of reversible transitions in T . The initial marking
is exactly M0.

Transition at label Preplaces Postplaces for all

t · fire t ℓ(t) tin, tearly , tlate fired(t), tout, t far t ∈ T←

t · undoω t-undo τ undoω(t), fired(t) ρω(t), take(f, t) t ∈ T←, ı(ω, t), f ∈ t far

t · undo(f) f τ take(f, t), f took(f, t) t ∈ T←, f ∈ t far

t · undone t-undo τ took(f, t) ρ(t), tearly t ∈ T←, f ∈ t far

t · resetω t-undo τ resetω(t), ρω(t), ρ(t) tlate, ackω(t) t ∈ T←, ı(ω, t)
t · elideω t-undo τ undoω(t), resetω(t) ackω(t) t ∈ T←, ı(ω, t)

Table 5.1: Expansion of a net with reversible transitions into a place/transition
system.

A distribution of a net with reversible transitions can be given as a function
D : S ∪ T → Loc. As in Condition (1) of Definition 33 we require that a
transition and its preplaces (of types in, early or late) reside on the same location.
Additionally, for any given transition t, all its undo-interface places undoω(t) and
resetω(t) for all ω ∈ Ω must reside on the same location – we refer to this location
as t-undo. The second column of Table 5.1 indicates how such a distribution is
translated under expansion of reversible transitions into ordinary net fragments:
The location of a reversible transition t is really the location of t · fire; it should
be the same as all preplaces of t. Furthermore, the transition t · undo(f) and
its preplace take(f, t) reside on the same location as the place f ∈ t far . All
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other net elements that are part of the macro expansion of t, except for ackω(t),
reside at the location t-undo. The resulting distribution of the expanded net
is now guaranteed to satisfy (1). Whether a net with reversible translations
is (essentially) distributed requires checking Condition (2) of Definition 33 (or
Condition (2′) of Definition 34) on its expansion.

5.1.3 The Conflict Replicating Implementation

Now we establish that a finitary unlabelled structural conflict net that has no
fully reachable visible pure M is distributable. We do this by proposing the
conflict replicating implementation of any such net, and show that this imple-
mentation is always (a) essentially distributed, and (b) equivalent to the original
net. In order to get the strongest possible result, for (b) we use branching ST-
bisimilarity with explicit divergence.

To define the conflict replicating implementation of N ′ = (S′, T ′, F ′,M ′0, ℓ
′)

we fix an arbitrary well-ordering < on its transitions. We let b, c, g, h, i, j, k, l, u
range over these ordered transitions, and write

– i# j iff i 6= j ∧ •i∩ •j 6= ∅ (transitions i and j are in conflict), and i
#
= j

iff i# j ∨ i= j,
– i <# j iff i < j ∧ i# j, and i ≤# j iff i <# j ∨ i = j.

Figure 5.4 shows the conflict replicating implementation of N ′. It is presented
as a net

I(N ′) = (S, T, F,Ω, ı,M0, ℓ)

with reversible transitions. The set Ω of undo interfaces is T ′, and for i ∈Ω we
have ı(i, t) iff t ∈ Ωi, where the sets of transitions Ωi ⊆ T are specified in Fig-
ure 5.4. The implementation I(N ′) inherits the places of N ′ (i. e. S ⊇ S′), and
we define M0↾S

′ to be M ′0. Given this, Figure 5.4 is not merely an illustration of
I(N ′) – it provides a complete and accurate description of it, thereby defining
the conflict replicating implementation of any net. In interpreting this figure
it is important to realise that net elements are completely determined by their
name (identity), and exist only once, even if they show up multiple times in
the figure. For instance, the place πh#j with h=2 and j=5 (when using natural
numbers for the transitions in T ′) is the same as the place πj#l with j=2 and
l=5; it is a standard preplace of executei2 (for all i ≤

# 2), a standard postplace of
fetched

i
2, as well as a late preplace of transfer25. Figure 5.5 depicts the same net

after expanding the macros for reversible transitions. An alternative description
of the latter net appears in Table 5.2 on Page 88.

The rôle of the transitions distributep for p ∈ S′ is to distribute a token in
p to copies pj of p in the localities of all transitions j ∈ T ′ with p ∈ •j. In
case j is enabled in N ′, the transition initialisej will become enabled in I(N ′).
These transitions put tokens in the places pre

j
k, which are preconditions for

all transitions execute
j
k, which model the execution of j at the location of k.

When two conflicting transitions h and j are both enabled in N ′, the first steps
initialiseh and initialisej towards their execution in I(N ′) can happen in parallel.
To prevent them from executing both, execute

j
j (of j at its own location) is
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∀j ∈ T ′

∀p ∈ •j
∀h <# j
∀i ≤# j
∀k ≥# j
∀l ≥# j
∀q ∈ •i
∀c ∈ q•

∀r ∈ i •

∀t ∈ Ωi :=
{initialisec | c

#
= i}+

{transferbc | b <
# c

#
= i}

∀u
#
= j

F ′(p, j)

F ′(i, r)

F ′(q, i)

p

τdistributep

pj

pre
j
k

πj

τinitialisej
u

undou(initialisej)

resetu(initialisej)

acku(initialisej)

transhj -in
πh#j

τtransferhj

u
undou(transfer

h
j )

resetu(transfer
h
j )

acku(transfer
h
j )

transhj -outpreij

πj#l

ℓ(i)execute
i
j

undoi(t)

fetch
q,c
i,j -in

qc
τ fetch

q,c
i,j

fetch
q,c
i,j -out

τfetchedij

acki(t)reseti(t)

τfinalisei

r

Figure 5.4: The entire conflict replicating implementation, drawn with emphasis
on the structure of the component of j; location borders dotted.
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∀j ∈ T ′

∀p ∈ •j
∀h <# j
∀i ≤# j
∀k ≥# j
∀l ≥# j
∀q ∈ •i
∀c ∈ q•

∀r ∈ i •

∀t ∈ Ωi := {initialisec | c
#
= i}+

{transferbc | b <
# c

#
= i}

∀u
#
= j

F ′(p, j)

F ′(p, j)

F ′(i, r)

F ′(q, i)

p

τdistributep

pj

τinitialisej · fire
fired(initialisej)

τ initialisej · undou

take(prej
k
, initialisej)

take(transhj -in, initialisej)

τ

initialisej · undo(prej
k
)

τ

initialisej · undo(transhj -in)

took(prej
k
, initialisej)

took(transhj -in, initialisej)

τinitialisej · undone

ρ(initialisej)

τ initialisej · resetuτ initialisej · elideu

ρu(initialisej)

pre
j

k

πj

undou(initialisej)
resetu(initialisej)

acku(initialisej)

πh#j

fired(transferhj )

τ transferhj · undou

take(transhj -out, transfer
h
j )

τ

transferhj · undo(transhj -out)

took(transhj -out, transfer
h
j )

τtransferhj · undone

ρ(transferhj )

τ transferhj · resetu
τ transferhj · elideu

ρu(transfer
h
j )

undou(transfer
h
j )

resetu(transfer
h
j )

acku(transfer
h
j )

transhj -in

τtransferhj · fire

transhj -out

preij πj#l

ℓ(i)execute
i
j

undoi(t)

fetch
q,c
i,j -in

qc τ fetch
q,c
i,j

fetch
q,c
i,j -out

τfetchedij

acki(t)reseti(t)

τ finalisei

r

Figure 5.5: The entire conflict replicating implementation (with macros ex-
panded).
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only possible after transferhj , which disables executehh. This happens because
transferhj takes the initially present token from the place πh#j , which is needed
to fire executehh.

The main idea behind the conflict replicating implementation is that a tran-
sition h ∈ T ′ is primarily executed by a sequential component of its own, but
when a conflicting transition j gets enabled, the sequential component imple-
menting j may “steal” the possibility to execute h from the home component
of h, by putting a token in transhj -in and getting transferhj to fire, and then keep
the options to do h and j open on the home component of j until one of them
occurs. To prevent h and j from stealing each other’s initiative, which would
result in deadlock, a global asymmetry is built in by ordering the transitions.
Transition j can steal the initiative from h only when h < j.

In case j is also in conflict with a transition l, with j < l, the initiative to
perform j may subsequently be stolen by l. In that case either h and l are in
conflict too – then l takes responsibility for the execution of h as well – or h
and l are concurrent – in that case h will not be enabled, due to the absence
of fully reachable pure Ms in N ′. The absence of fully reachable pure Ms also
guarantees that it cannot happen that two concurrent transitions j and k both
steal the initiative from an enabled transition h.

After the firing of executeij all tokens that were left behind in the process of
carefully orchestrating this firing will have to be cleaned up, in order to prepare
the net for the next activity in the same neighbourhood. This is the reason for
the reversibility of the transitions preparing the firing of executeij . Hence there
is an undo interface for each transition i ∈ T ′, cleaning up the mess made in
preparation of firing executeij for some j ≥# i. Ωi is the set of all transitions t
that could possibly have contributed to this. For each of them the undo interface
i is activated, by executeij depositing a token in undoi(t). After all preparatory
transitions that have fired are undone, tokens appear in the places pc for all p∈•i
and c ∈ p•. These are collected by fetch

p,c
i,j , after which all transitions in Ωi get

a reset signal. Those that have fired and were undone are reset, and those that
never fired perform elidei(t). In either case a token appears in acki(t). These
are collected by finalisei, which finishes the process of executing i by depositing
tokens in its postplaces.

We allow multiple tokens to reside on the same place in the specification. To
ensure that this does never lead to the component implementing a transition j
starting the firing protocol again, even though it has not yet completed an earlier
round, we introduce a place πj which only holds a token while the component
is idle.

By means of location boundaries, Figure 5.4 also displays a distribution of
I(N ′). It has

• a location p for every place p ∈ S′, containing distributep and p;

• locations initialisej and executej for every j ∈ T ′ – collectively referred to
as “the location of j” – the latter containing all transitions executeij for

i ≤# j ∈ T ′;
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• locations fetchedij for every i ≤# j ∈ T ′;

• locations initialisej-undo for every j ∈ T ′;

• locations transferhj -undo for every h <# j ∈ T ′;

• and locations finalisei for every i ∈ T ′.

A transition transferhj resides at location executeh, due to its common preplace
πh#j with execute

g
h. Likewise, fetchp,ci,j resides at location initialisec. Provided

N ′ is a finitary unlabelled structural conflict net without a fully reachable pure
M, the proof of Theorem 12 will show that this distribution makes I(N ′) an
essentially distributed net.

p

q

r

s

v

x

y z

a 1 b 2 c 3 d4 e 5

Figure 5.6: An example net.
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Figure 5.7: The (relevant parts of the) conflict replicating implementation of the net in Figure 5.6, location borders dotted.
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The conflict replicating implementation is illustrated by means of the finitary
unlabelled structural conflict net N ′ of Figure 5.6. The places and transitions
a-q-b-s-c-x-d in this net constitute a Long M: for each pair a-b, b-c and c-d of
neighbouring transitions, as well as for the pair a-d of extremal transitions, there
exists a reachable marking enabling them both. Moreover, neighbouring transi-
tions in the long M are in conflict: a# b, b# c and c# d, whereas the extremal
transitions are concurrent: a ⌣ d. However, N ′ has no fully reachable pure
M: no M-shaped triple of transitions a-b-c, b-c-d or b-c-e is ever simultaneously
enabled.

In [GGS08a] we gave a simpler implementation, the transition-controlled
choice implementation, that works for all finitary unlabelled 1-safe nets without
such a long M. Hence N ′ constitutes an example where that implementation
does not apply, yet the conflict replicating implementation does. In fact, when
leaving out the z-e-branch it may be the simplest example with these properties.
We have added this branch to illustrate the situation where three transitions
are pairwise in conflict.

Figure 5.7 presents relevant parts of the conflict replicating implementation
I(N ′) of N ′. What corresponds to the ten places of N ′ can easily be discerned
in I(N ′), but the transitions of N ′ are replaced by more complicated net frag-
ments. In Figure 5.7 we have simplified the rendering of I(N ′) by simply just
copying the five topmost transitions of N ′, instead of displaying the net frag-
ments replacing them. This simplification is possible since the top half of N ′

is already distributed. To remind the reader of this, we left those transitions
unlabelled.2

In order to fix a well-ordering < on the remaining transitions, we named
them after the first five positive natural numbers. The ordered conflicts between
those transitions now are 1≤#2, 2≤#3, 3≤#4, 3≤#5 and 4≤#5. In Figure 5.7
we have skipped all places, transitions and arcs involved in the cleanup of tokens
after firing of a transition. In this example the cleanup is not necessary, as no
place of N ′ is visited twice. Thus, we displayed only the non-reversible part
of the transitions initialisej and transferhj – i. e. initialisej · fire and transferhj · fire
– as well as the transitions distributep and executeij . Likewise, we omitted the
outgoing arcs of executeij , the places πj , and those places that have arcs only
to omitted transitions. We leave it to the reader to check this net against the
definition in Figure 5.4, and to play the token game on this net, to see that it
correctly implements N ′.

In Section 5.3 we will show, for any finitary unlabelled structural conflict net N ′

without a fully reachable visible pureM, that I(N ′) ≈∆
bSTb N

′, and that I(N ′) is
essentially distributed. Hence I(N ′) is an essentially distributed implementation
of N ′. By Theorem 3 this implies that N ′ is distributable up to ≈∆

bSTb. Together
with Theorem 8 it follows that, for any equivalence between ≈F and ≈∆

bSTb,

2While it is highly desirable in practical applications to use such simplifications to reduce
the implementation size, we refrained from doing so in the formal definition of our implemen-
tation. It would have become less regular and the proofs correspondingly longer.
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a finitary unlabelled structural conflict net is distributable iff it has no fully
reachable visible pure M.

Given the complexity of our construction, no techniques known to us were
adequate for performing the equivalence proof. We therefore had to develop
an entirely new method for rigorously proving the equivalence of two nets up
to ≈∆

bSTb, one of which known to be unlabelled. This method is presented in
Section 5.2.

5.2 Proving Implementations Correct

This section presents a method for establishing the equivalence of two nets, one
of which known to be unlabelled, up to branching ST-bisimilarity with explicit
divergence. It appears as Theorem 9. First approximations of this method are
presented in Lemmas 14 and 15. The progression from Lemma 14 to Lemma 15
and to Theorem 9 makes the method more specific (so less general) and more
powerful. By means of a simplification a similar method can be obtained, also
in three steps, for establishing the equivalence of two nets up to interleaving
branching bisimilarity with explicit divergence. This is elaborated at the end of
this section.

We sometimes illustrate the results of this section in terms of the conflict
replicating implementation of a net defined in Section 5.1.3. However, the actual
application of these results to show the correctness of that implementation is
presented in Section 5.3.

Lemma 14 Let N = (S, T, F,M0, ℓ) and N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be two fini-

tary nets, N ′ being unlabelled. Suppose there is a relation B ⊆ (NS × NT ) ×
(NS′

× NT ′

) such that

a) (M0, ∅)B (M ′0, ∅),

b) if (M1, U1)B (M ′1, U
′
1) and (M1, U1)

τ
−→ (M2, U2) then (M2, U2)B (M ′1, U

′
1),

c) if (M1, U1)B (M ′1, U
′
1) and (M1, U1)

η
−→ (M2, U2) for some η ∈ Act±

then ∃(M ′2, U
′
2). (M

′
1, U

′
1)

η
−→ (M ′2, U

′
2) ∧ (M2, U2)B (M

′
2, U

′
2),

d) if (M1, U1)B (M ′1, U
′
1) and (M ′1, U

′
1)

η
−→ with η ∈ Act±

then either (M1, U1)
η
−→ or (M1, U1)

τ
−→

e) and there is no infinite sequence (M,U)
τ
−→ (M1, U1)

τ
−→ (M2, U2)

τ
−→ · · ·

with (M,U)B (M ′, U ′) for some (M ′, U ′).

Then B is a branching split bisimulation with explicit divergence, and N ≈∆
bSTb

N ′.

Proof: It suffices to show that B satisfies Conditions 1–7 of Definition 17; the
condition on explicit divergence follows immediately from (e), using that an
unlabelled net admits no divergence at all.
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1. By (a).

2. By (c) with η = a+.

3. By (c) with η = a−.

4. By (b).

5. Suppose M1BM′1 and M
′
1

a+

−→ M
′
2. By (d) we have either M1

a+

−→ M
1
1

or M1
τ
−→ M

1
1 for some M

1
1. In the latter case (b) yields M

1
1BM2, and

using (d) again, eitherM1
1

a+

−→M
2
1 orM

1
1

τ
−→M

2
1 for someM2

1. Repeating
this argument, if the choice between a+ and τ is made k times in favour
of τ (with k ≥ 0), we obtain M

k
1BM2 (where M

0
1 := M1) and either

M
k
1

a+

−→ M
k+1
1 or M

k
1

τ
−→ M

k+1
1 . By (e), at some point the choice must

be made in favour of a+, say at Mk
1 . Thus M1

τ
−→

∗
M

k
1

a+

−→M
k+1
1 , with

M
k
1BM2. We use Mk+1

1 as the M2 from Definition 17. It remains to show
that Mk+1

1 BM′2. By (c) there is an M
′
3 with M

′
1

a+

−→M
′
3 and M

k+1
1 BM′3.

Since N ′ is unlabelled, M′2 = M
′
3.

6. As the preceding case, substituting a− for a+.

7. As N ′ is unlabelled, M′1
τ
−→ cannot occur.

The final conclusion follows by Proposition 2. �

Lemma 14 provides a method for proving N ≈∆
bSTb N

′ that can be more effi-
cient than directly checking the definition. In particular in Condition (d) one
no longer has to match the targets of corresponding transitions. Lemma 15
below, when applicable, provides an even more efficient method: it is no longer
necessary to specify the branching split bisimulation B , and the targets have
disappeared from the transitions in Condition bc as well. Instead, we have ac-
quired Condition a, but this is a structural property, which is relatively easy to
check.

Lemma 15 Let N = (S, T, F,M0, ℓ) and N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be finitary

nets, with N ′ unlabelled, S′ ⊆ S, and M ′0 = M0 ↾ S
′. Suppose:

(a) ∀t ∈ T, ℓ(t) 6= τ. ∃t′ ∈ T ′, ℓ(t′) = ℓ(t). ∃G ∈ NT , ℓ(G) ≡ ∅. Jt′K = Jt+GK.

(b) For any G ∈ ZT with ℓ(G) ≡ ∅, M ′ ∈ NS′

, U ′ ∈NT ′

and U ∈ NT with
ℓ′(U ′) = ℓ(U), M ′ + •U ′ ∈ [M ′0〉N ′ and M := M ′ + •U ′ + (M0 −M ′0) +
JGK − •U ∈ NS with M + •U ∈ [M0〉N , it holds that:

(a) there is no infinite sequence M
τ
−→M1

τ
−→M2

τ
−→ · · ·

(b) if M ′
a
−→ with a ∈ Act then M

a
−→ or M

τ
−→

(c) and if M
a
−→ with a ∈ Act then M ′

a
−→.

Then N ≈∆
bSTb N

′.
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Proof:3 Define B ⊆ (NS×NT )× (NS′

×NT ′

) by (M,U)B (M ′, U ′) :⇔ ℓ′(U ′) =
ℓ(U) ∧ M ′ + •U ′ ∈ [M ′0〉N ′ ∧ ∃G ∈ ZT . ℓ(G) ≡ ∅ ∧ M + •U = M ′ + •U ′ +
(M0−M

′
0) + JGK ∈ [M0〉N . It suffices to show that B satisfies Conditions (a)–

(e) of Lemma 14.

(a) Take G = ∅.

(b) Suppose (M1, U1)B (M ′1, U
′
1) and (M1, U1)

τ
−→ (M2, U2). Then ℓ′(U ′1) =

ℓ(U1) ∧M ′1 +
•U ′1 ∈ [M

′
0〉N ′ ∧ ∃G ∈ ZT . ℓ(G)≡ ∅ ∧M1 = M ′1 +

•U ′1 + (M0 −
M ′0) + JGK−•U1 ∧M1 +

•U ∈ [M0〉N and moreover M1
τ
−→M2 ∧ U2 = U1.

So M1[t〉M2 for some t∈T with ℓ(t)=τ . Hence M2 = M1+JtK = M ′1+
•U ′1+

(M0−M ′0)+JG+tK−•U1. Since (M1+
•U1)[t〉(M2+

•U1), we haveM2+
•U1 ∈

[M0〉N . Since also ℓ(G+ t) ≡ ∅ it follows that (M2, U1)B (M ′1, U
′
1).

(c) Suppose (M1, U1)B (M ′1, U
′
1) and (M1, U1)

η
−→ (M2, U2), with η ∈ Act±.

Then ℓ′(U ′1) = ℓ(U1), M ′1 +
•U ′1 ∈ [M ′0〉N ′ and

∃G ∈ ZT . ℓ(G)≡∅∧M1+
•U1 = M ′1+

•U ′1+(M0−M
′
0)+JGK ∈ [M0〉N . (5.1)

First suppose η = a+. Then ∃t∈ T. ℓ(t) = a∧M1[t〉 ∧M2 = M1− •t∧U2 =
U1 + {t}. Using that M1

a
−→ with a ∈ Act, by Condition bc we have

M ′1
a
−→, i. e. M ′1[t

′〉 for some t′ ∈ T with ℓ′(t′) = a. Let M ′2 := M ′1 −
•t and

U ′2 := U ′1 + {t
′}. Then (M ′1, U

′
1)

a+

−→ (M ′2, U
′
2). Moreover, ℓ(U2) = ℓ(U ′2),

M ′2+
•U ′2 = M ′1+

•U ′1 ∈ [M
′
0〉N ′ and M2+

•U2 = M1+
•U1. In combination

with (5.1) this yields

M2 +
•U2 = M1 +

•U1 = M ′1 +
•U ′1 + (M0−M

′
0) + JGK

= M ′2 +
•U ′2 + (M0−M

′
0) + JGK ,

so (M2, U2)B (M ′2, U
′
2).

Now suppose η = a−. Then ∃t∈U1. ℓ(t)=a∧U2=U1−{t}∧M2 = M1+ t•.
Since ℓ′(U ′1)= ℓ(U1) there is a t′∈U ′1 with ℓ(t′)=a. Let M ′2 := M ′1+ t′• and
U ′2 := U ′1 − {t

′}. Then (M ′1, U
′
1)

a−

−→ (M ′2, U
′
2). By construction, ℓ(U2) =

ℓ(U ′2). Moreover, M2 +
•U2 = M1 + t• + •U1 − •t = (M1 +

•U1) + JtK, and
likewise

M ′2 +
•U ′2 = (M ′1 +

•U ′1) + Jt′K (5.2)

so (M ′1+
•U ′1)[t

′〉(M ′2+
•U ′2). Since M

′
1+
•U ′1∈[M

′
0〉N ′ , this yields M ′2+

•U ′2∈
[M ′0〉N ′ . Moreover, M2+

•U2 = M1+ t•+•U1−•t = M1+
•U1+ JtK ∈ [M0〉N .

Furthermore, combining (5.1) and (5.2) gives

∃G ∈ ZT . ℓ(G)≡∅∧M2+
•U2−JtK = M ′2+

•U ′2−Jt′K+(M0−M
′
0)+JGK. (5.3)

By Condition a of Lemma 15, ∃t′′ ∈ T ′, ℓ(t′′) = ℓ(t). ∃Gt ∈ NT , ℓ(Gt) ≡
∅. JtK = Jt′′ −GtK. Since N ′ is an unlabelled net, it has only one transition
t† with ℓ(t†) = a, so t′′ = t′. Substitution of Jt′ −GtK for JtK in (5.3) yields

∃G ∈ ZT . ℓ(G)≡ ∅ ∧M2 +
•U2 = M ′2 +

•U ′2 + (M0 −M ′0) + JG−GtK.
3For didactic reason it may be preferable to skip ahead and read the (simpler) proof of

Lemma 18 first.
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Since ℓ(G−Gt) ≡ ∅ we obtain (M2, U2)B (M ′2, U
′
2).

(d) Follows directly from Condition bb and Definition 16.

(e) Follows directly from Condition ba and Definition 16. �

To illustrate the use of Lemmas 18 and 15, let N ′ be an unlabelled net and
N be its conflict replicating implementation, depicted in Figure 5.5. Condition
(1) says that for any visible transition t in the implementation – this must be
executeij for some i and j – there must be a transition t′ in N ′ with the same
label – this must be i – such that the same token replacement Jt′K that results
from firing t′ in the net N ′ can also achieved by t in N together with a multiset
G of internal transitions of N . For this to even make sense it is necessary that
S′ ⊆ S, so that Jt′K can just as well be seen as a token replacement of N . This
condition can be fulfilled by taking G to contain distributep for every preplace
p of i, fetchp,ci,j for every preplace p of i and every c ∈ p•, fetchedij , u · elidei for

u ∈ Ωi, and finalisei.
In the proof of Lemma 18/15, a branching bisimulation is constructed be-

tween the markings of N ′ and N , by relating any reachable marking M ′ of N ′

with the corresponding marking M ′+(M0−M
′
0) of N ; the latter is the marking

M ′ seen as a marking of N , together with those places in S \S′ that are marked
initially (or by default). In addition, M ′ is also related to markings obtained
from M ′ + (M0−M ′0) by adding or subtracting the token replacement due to
firing some internal transitions of N . For instance, compared to the state of N
given by the marking M ′+ (M0−M ′0) it could be that finalisei has not yet fired
– so that acki(t) is marked for all t ∈ Ωi instead of the postplaces r of i – and
that distributep has already fired for some place p. This gives rise to the marking
M ′+(M0−M

′
0)+JGK being related to M ′, with G = −{finalisei}+{distributep}.

To show that the relation really is a branching bisimulation with explicit diver-
gence it suffices to check the conditions (a)–(c). That these are enough to obtain
the stronger conditions (a)–(e) of Lemma 17/14 follows with help of the new
condition (1).

In the proof of Lemma 15 the bisimulation constructed in the proof of
Lemma 18 is strengthened to a split bisimulation by taking account of the sets
U ′ and U of transitions currently firing in N ′ and N . Here we need to require
that U ′ and U carry the same multiset of labels. Moreover, the preplaces of U ′

and U need to be added to M ′ and M when determining that they are reach-
able markings, and in relating these markings to each other; for these purposes
we thus use the markings we would have had before starting the transitions
that are currently firing. On the other hand, M ′ and M themselves need to
be markings (i. e. put a non-negative number of tokens in each place), and in
conditions (a)–(c) only those transitions matter that can be fired from M ′ and
M themselves – without the preplaces of U ′ and U .

In Lemma 15 a relation is explored between markings M̄ and M̄+JHK (where
M̄ is M ′ +•U ′ + (M0 −M ′0) of Lemma 15, H := G, and M̄ + JHK is M +•U of
Lemma 15). In such a case, we can think of M̄ as an “original marking”, and of
M̄ + JHK as a modification of this marking by the token replacement JHK. The
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next lemma provides a method to trace certain places s marked by M̄ + JHK (or
transitions t that are enabled under M̄ + JHK) back to places that must have
been marked by M̄ before taking into account the token replacement JHK. Such
places are called faithful origins of s (or t). In tracking the faithful origins of
places and transitions, we assume that the places marked by M̄ are taken from
a set S+ and the transitions in H from a set T+. In Lemma 16 we furthermore
assume that the flow relation restricted to S ∪ T+ is acyclic. We will need this
lemma in proving the correctness of our final method of proving N ≈∆

bSTb N
′.

Definition 49 Let N = (S, T, F,M0, ℓ) be a finitary net, T+ ⊆ T a set of
transitions and S+ ⊆ S a set of places.

• A path in N is an alternating sequence π = x0x1x2 · · ·xn ∈ (S ∪ T )∗ of
places and transitions, such that F (xi, xi+1) > 0 for 0 ≤ i < n. The arc
weight F (π) of such a path is the product Πn−1

0 F (xi, xi+1).

• A place s ∈ S is faithful w.r.t. T+ and S+ iff |{s}∩S+|+
∑

t∈T+
F (t, s) = 1.

• A path x0x1x2 · · ·xn ∈ (S ∪ T )∗ from x0 to xn is faithful w.r.t. T+ and
S+ iff all intermediate nodes xi for 0 ≤ i < n are either transitions in T+

or faithful places w.r.t. T+ and S+.

• For x ∈ S ∪T , the infinitary multiset ∗x ∈ (N∪{∞})S+ of faithful origins
of x is given by ∗x(s) = sup{F (π) | π is a faithful path from s ∈ S+ to x}.
(So ∗x(s) = 0 if no such path exists.)

Suppose a markingM is reachable from a marking M̄ ∈ NS+ by firing transitions
from T+ only. So M = M̄ + JHK for some H ∈ NT+ . Then, if a faithful place
s bears a token under M – i. e. M(s) > 0 – this token has a unique source: if
s ∈ S+ it must stem from M̄ and otherwise it must be produced by the unique
transition t ∈ T+ with F (t, s) = 1.

Now consider a period in the evolution of the net N that starts with the
marking M̄ , and during which only transitions from T+ fire. Suppose that
π = x0x1x2 · · ·xn is a faithful path from a place x0 ∈ S+ to a either a faithful
place xn that gets marked at some point during this period or a transition xn

that fires during (or right after) this period. In that case a token, left on x0 by
the marking M̄ , must have travelled along that path from x0 to xn – where a
token is understood to visit a transition when that transition fires. Namely, if
xi+1 is a transition that fired at some point, then its (faithful) preplace xi must
have been marked right beforehand; and if a faithful place xj+i was marked at
some point, then xj+i /∈ S+ and the token in xj+i must have been produced by
the transition xi ∈ T+.

Note that F (π) is the product of all arc weights in the path on arcs from
places to transitions; for all the weights on arcs from transitions in T+ to faithful
places are 1. Taking arc weights into account, for every token in xn as many
as F (π) token must have started in x0. Namely, for a transition xi+1 to fire
once, F (xi, xi+1) tokens must have come from place xi, and for each token in a
faithful place xj+1, the transition xj must have fired once.
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In a net without arc weights, ∗x is always a set, namely the set of places s in
S+ from which the flow relation of the net admits a path to x that passes only
through faithful places and transitions from T+ (with the possible exception of
x itself). For nets with arc weights, the underlying set of ∗x is the same, and the
multiplicity of s ∈ ∗x is obtained by multiplying all arc weights on the qualifying
path from s to x; in case of multiple such paths, we take the upper bound over all
such paths (which could yield the value ∞). It follows from the analysis above
that if a faithful place x gets marked, or a transition x enabled, during a period
as described above, then at least ∗x(s) tokens must have been present in s at
the beginning of this period. Lemma 16 formalises this analysis by comparing
a marking M̄ + JHK that marks or enables x (possibly multiple times) with the
marking M̄ that marks the faithful origins ∗x of x. HereH ∈ NT+ is the multiset
of transitions whose firing converts M̄ into M̄ + JHK. However, Lemma 16 does
not require that this multiset actually can be fired in any particular order. To
enable that generalisation, it must assume that F ↾ (S ∪ T+) is acyclic.

For k 6= 0, we have

k · ∗x(s) = sup{k · F (π) | π is a faithful path from s ∈ S+ to x} .

In order to also have this equality for k = 0 and ∗x(s) =∞ we define 0 ·∞ := 0
in this context.

Observation 12 Let (S, T, F,M0, ℓ) be a finitary net, T+ ⊆ T a set of transi-
tions and S+ ⊆ S a set of places. For faithful places s and transitions t ∈ T we
have

∗s =

{

{s} if s ∈ S+
∗t if t ∈ T+ ∧ F (t, s) = 1

∗t =
⋃

{F (s, t) · ∗s | s ∈ •t∧ s faithful}.

�

Lemma 16 Let (S, T, F,M0, ℓ) be a finitary net, T+ ⊆ T a set of transitions
such that F ↾ (S ∪ T+) is acyclic, and S+ ⊆ S a set of places. Let M̄ ∈ NS+

and H ∈ NT+ , such that M̄ + JHK ∈ NS (i. e. places occur only non-negatively
in M̄ + JHK). Then

(a) for any faithful place s w.r.t. T+ and S+ we have (M̄ + JHK)(s) · ∗s ≤ M̄ ;

(b) for any k ∈ N, and any transition t with (M̄ + JHK)[k · {t}〉, we have
k · ∗t ≤ M̄ .

Proof: We apply induction on |H |. In the base case, H = ∅, which formally
is included in the induction step, (a) follows directly from the assumption that
M̄ ∈ NS+ and the observation that ∗s = {s}.

(a). When (M̄ + JHK)(s) = 0 it trivially follows that (M̄ + JHK)(s) · ∗s ≤ M̄ . So
suppose (M̄ + JHK)(s) > 0. Then either s ∈ S+ or there is a unique t ∈ T+ with
H(t) > 0 and F (t, s) = 1. In the first case, using that s ∈ u• for no u ∈ T+, we
have (M̄+JHK)(s) ≤ M̄(s), so (M̄+JHK)(s) ·∗s ≤ M̄(s) ·{s} ≤ M̄ . In the latter
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case, we have (M̄ + JHK)(s) ≤ M̄(s) +
∑

u∈T+
H(u) · F (u, s) = M̄(s) +H(t) =

H(t) and ∗s = ∗t. Thus:

(M̄ + JHK)(s) · ∗s ≤ H(t) · ∗t . (5.4)

Let U := {u ∈ T+ | H(u) > 0 ∧ uF+t} be the set of transitions occurring
in H from which the flow relation of the net offers a non-empty path to t. As
F ↾ (S ∪ T+) is acyclic, t /∈ U , so H ↾U < H . Let s′ be any place with s′ ∈ •u
for some transition u ∈ U . Then, by construction of U , it cannot happen that
s′ ∈ v• for some transition v /∈ U with H(v) > 0. Hence (M̄ + JH ↾UK)(s′) ≥
(M̄ + JHK)(s′) ≥ 0. Moreover, for any other place s′′ we have •(H ↾U)(s′′) = 0
and thus (M̄ + JH ↾UK)(s′′) ≥ M̄(s′′) ≥ 0. It follows that M̄ + JH ↾UK ∈ NS .

For each s′′′ ∈ •t we have •(H −H ↾U)(s′′′) ≥ H(t) · •t(s′′′) and (H −H ↾

U)•(s′′′) = 0 and hence 0 ≤ (M̄+JHK)(s′′′) ≤ (M̄+JH ↾UK)(s′′′)−H(t)·•t(s′′′).
For this reason, H(t)·•t ≤ M̄+JH ↾UK. It follows that (M̄+JH ↾UK)[H(t)·{t}〉.
Thus, by (5.4) and induction, (M̄ + JHK)(s) · ∗s ≤ H(t) · ∗t ≤ M̄ .

(b). Let (M̄ + JHK)[k · {t}〉. For any faithful s ∈ •t we have (M̄ + JHK)(s) ≥
k · F (s, t), and thus, using (a),

k · F (s, t) · ∗s ≤ (M̄ + JHK)(s) · ∗s ≤ M̄ .

Therefore, by Observation 12, k ·∗t =
⋃

{k ·F (s, t) ·∗s | s ∈ •t∧s faithful} ≤ M̄ .
�

As a (forthcoming) application of Lemma 16 consider the branching split bisim-
ulation with explicit divergence between a net N ′ and its conflict replicating
implementation N that is constructed according to the proof of Lemma 15.
When a split marking (M ′, U ′) is related to (M,U), then M + •U = M ′+ •U ′+
(M0−M ′0) + JGK for a signed multiset G of internal transitions of N . Further-
more suppose that G is a true multiset over the set of transitions T+, consisting
of distributep, initialisej ·fire and transferhj ·fire only (for arbitrary p, j and h). Take

M̄ := M ′+•U ′+(M0−M ′0), H := G and thusM+•U = M̄+JHK. Let S+ := S′∪
{s ∈ S | (M0−M ′0)(s) > 0}. Then p distributep pi initialisei · fire preij executeij
is a faithful path from p to executeij . The arc weight of this path is F ′(p, i). So
∗executeij ≥ F ′(p, i). Thus if executeij is enabled under M + •U then M̄ must
place at least F ′(p, i) tokens in the place p. As this reasoning applies to every
preplace p of i, it follows that i is enabled under M ′ + •U ′.

The following theorem is the main result of this section. It presents a method
for proving N ≈∆

bSTb N
′ for N a net and N ′ an unlabelled net. Its main advan-

tage w.r.t. directly using the definition, or w.r.t. application of Lemma 14 or 15,
is the replacement of requirements on the dynamic behaviour of nets by struc-
tural requirements. Such requirements are typically easier to check. Replacing
the requirement “M + •U ∈ [M0〉N” in Condition 5 by “M + •U ∈ NS” would
have yielded an even more structural version of this theorem; however, that
version turned out not to be strong enough for the verification task performed
in Section 5.3.
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Theorem 9 Let N = (S, T, F,M0, ℓ) and N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be finitary

nets with N ′ unlabelled, S′ ⊆ S, and M ′0 = M0 ↾ S′. Suppose there exist sets
T+ ⊆ T and T− ⊆ T and a class NF ⊆ ZT , such that

1. F ↾ (S ∪ T+) is acyclic.

2. F ↾ (S ∪ T−) is acyclic.

3. For all t ∈ T with ℓ(t) 6= τ there exists some t′ ∈ T ′ with ℓ(t′) = ℓ(t) such
that •t′ ≤ ∗t ∧ ∃G ∈ NT , ℓ(G) ≡ ∅. Jt′K = Jt+GK. Here ∗t is the multiset
of faithful origins of t w.r.t. T+ and S′ ∪ {s ∈ S |M0(s) > 0}.

4. There exists a function f : T → N with f(t) > 0 for all t∈ T , extended to
ZT as in Definition 1, such that for each G ∈ ZT with ℓ(G) ≡ ∅ there is
an H ∈ NF with ℓ(H) ≡ ∅, JHK = JGK and f(H) = f(G).

5. For every M ′ ∈ NS′

, U ′ ∈ NT ′

and U ∈ NT with ℓ(U) = ℓ′(U ′) and
M ′ + •U ′ ∈ [M ′0〉N ′ , there is an HM ′,U ∈ NT+ with ℓ(HM ′,U ) ≡ ∅, such
that for each H ∈NF with M := M ′+ •U ′+(M0−M ′0)+ JHK− •U ∈ NS

and M + •U ∈ [M0〉N :

(a) MM ′,U := M ′ + •U ′ + (M0 −M ′0) + JHM ′,U K− •U ∈ NS ,

(b) if M ′
a
−→ with a ∈ Act then MM ′,U

a
−→,

(c) H ≤ HM ′,U .

(d) if H(u) < 0 then u ∈ T−,

(e) if H(u) < 0 and H(t) > 0 then •u ∩ •t = ∅,

(f) if H(u) < 0 and (M +•U)[t〉 with ℓ(t) 6= τ then •u ∩ •t = ∅,

(g) if (M +•U)[{t}+{u}〉 and t′, u′ ∈ T ′ with ℓ′(t′) = ℓ(t) and ℓ′(u′) =
ℓ(u), then •t′ ∩ •u′ = ∅.

Then N ≈∆
bSTb N

′.

Proof: It suffices to show that Condition b of Lemma 15 holds (as Condition a
of Lemma 15 is part of Condition 3 above). So let G ∈ ZT with ℓ(G) ≡ ∅,
M ′ ∈ NS′

, U ′ ∈ NT ′

and let U ∈ NT with ℓ′(U ′) = ℓ(U), M ′+•U ′ ∈ [M ′0〉N ′ ,
M := M ′+•U ′+(M0−M

′
0)+JGK−•U ∈ NS and M + •U ∈ [M0〉N .

(a) Suppose M
τ
−→ M1

τ
−→ M2

τ
−→ · · · . Then there are transitions ti ∈ T

with ℓ(ti) = τ , for all i ≥ 1, such that M [t1〉M1[t2〉M2[t3〉 · · · . As also
(M+•U)[t1〉(M1+

•U)[t2〉(M2+
•U)[t3〉 · · · , it follows that (Mi+

•U)∈[M0〉N
for all i ≥ 1. Let G0 := G and for all i ≥ 1 let Gi := Gi−1 + {ti}.
Then ℓ(Gi) ≡ ∅ and Mi = M ′ +•U ′ + (M0 −M ′0) + JGiK −•U . Moreover,
f(Gi) = f(Gi−1) + f(ti) > f(Gi−1). For all i ≥ 0, using Condition 4, let
Hi ∈ NF be so that JHiK = JGiK and f(Hi) = f(Gi). Then Mi = M ′ +
•U ′+(M0−M ′0)+ JHiK−•U and f(H0) < f(H1) < f(H2) < · · · . However,
from Condition 5c we get f(Hi) ≤ f(HM ′) for all i ≥ 0. The sequence
M

τ
−→M1

τ
−→M2

τ
−→ · · · therefore must be finite.
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(b) Now suppose M ′
a
−→ with a ∈ Act. By Condition 4 above there exists an

H ∈ NF such that ℓ(H) ≡ ∅ and JHK = JGK, and hence M = M ′ +•U ′ +
(M0 −M ′0) + JHK−•U . Let H− := {u ∈ T | H(u) < 0}.

• First suppose H− 6= ∅. By Condition 5d, H− ⊆ T−. By Condition 2,
the relation <−:= (F ↾ (S ∪ T−))

+ is a partial order on S ∪ T−, and
hence on H−. Let u be a minimal transition in H− w.r.t. <−. By
definition, for all s ∈ S,

M(s) = M ′(s) + •U ′(s) + (M0 −M ′0)(s) +
∑

t∈T H(t) · F (t, s) +
∑

t∈T−H(t) · F (s, t) +
∑

t∈U−U(t) · F (t, s).
(5.5)

As M ′0 = M0 ↾ S′, we have M ′0 ≤ M0. Hence the first three sum-
mands in this equation are always non-negative. Now assume s ∈ •u.
Since u is minimal w.r.t. <−, there is no t ∈ T with H(t) < 0 and
F (t, s) 6= 0. Hence also all summands H(t) · F (t, s) are non-negative.
By Condition 5e, there is no t ∈ T with H(t) > 0 and F (s, t) 6= 0, so all
summands −H(t) · F (s, t) are non-negative as well. By Condition 5f,
there is no t ∈ T with U(t) > 0 and F (s, t) 6= 0, for this would imply
that ℓ(t) 6= τ and (M +•U)[t〉, so no summands in (5.5) are negative.
Thus 0 ≤ −H(u) · F (s, u) ≤ M(s). Since H(u) ≤ −1, this implies
M(s) ≥ F (s, u). Hence u is enabled in M . As ℓ(u) = τ , we have
M

τ
−→.

• Next suppose H− = ∅ but H 6= HM ′,U . Let H⌣ := {u ∈ T |
HM ′,U (u) − H(u) > 0}. Then H⌣ 6= ∅ by Condition 5c. Since
HM ′,U ∈ NT+, H⌣ ⊆ T+. By Condition 1, <+:= (F ↾ (S ∪ T+))

+

is a partial order on S ∪ T+, and hence on H⌣. Let u be a minimal
transition in H⌣ w.r.t. <+. We have M = M ′ +•U ′ + (M0 −M ′0) +
JHM ′,U + (H −HM ′,U )K−•U = MM ′,U + JH −HM ′,UK. Hence, for all
s ∈ S,

M(s) = MM′,U (s) +
∑

t∈T
(H −HM′,U )(t) · F (t, s) +∑

t∈T
−(H −HM′,U )(t) · F (s, t) .

(5.6)

By Condition 5a, MM ′,U ∈ NS . By Condition 5c, H −HM ′,U ≤ ∅. For
s ∈ •u there is moreover no t ∈ H⌣ with s ∈ t•, so no t ∈ T with
(H − HM ′,U )(t) < 0 and F (t, s) 6= 0. Hence no summands in (5.6)
are negative. It thereby follows that 0 ≤ −(H−MM ′,U )(u) · F (s, u) ≤
M(s). Since (H−HM ′,U )(u) ≤ −1, this impliesM(s) ≥ F (s, u). Hence
u is enabled in M . As ℓ(u) = τ , we have M

τ
−→.

• Finally suppose H = HM ′,U . Then M = MM ′,U and M
a
−→ follows by

Condition 5b.

(c) Next suppose M
a
−→ with a ∈ Act. Then there is a t ∈ T with ℓ(t) = a 6= τ

and M [t〉. So (M + •U)[t〉. We will first show that (M ′ + •U ′)
a
−→. By

Condition 4 there exists an H0 ∈ NF ⊆ ZT such that ℓ(H0) ≡ ∅ and
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JH0K = JGK, and hence M +•U = M ′ +•U ′ + (M0 −M ′0) + JH0K ∈ [M0〉N .
For our first step, it suffices to show that whenever H ∈ NF with MH :=
M ′ +•U ′ + (M0 −M ′0) + JHK ∈ [M0〉 and MH [t〉, then (M ′ +•U ′)

a
−→. We

show this by induction on f(HM ′,U −H), observing that f(HM ′,U −H) ∈ N
by Conditions 5c (with empty U) and 4.

We consider two cases, depending on the emptiness of H− := {u ∈ T |
H(u) < 0}.

First assume H−= ∅. Then H ∈ NT. By Condition 5c (with empty U) we
even have H ∈ NT+. Let ∗t denote the multiset of faithful origins of t w.r.t.
T+ and S+ := S′ ∪ {s ∈ S | M0(s) > 0}. By Lemma 16(b), taking k = 1
and M̄ := M ′ +•U ′ + (M0 −M ′0), and using Condition 1 of Theorem 9,
∗t ≤ M ′ +•U ′ + (M0 −M ′0). So by Condition 3 of Theorem 9 there is a
t′ ∈ T ′ with ℓ(t′) = ℓ(t) and •t′ ≤M ′+•U ′+(M0−M

′
0). Since

•t′ ∈ NS′

and
M ′0 = M0 ↾S

′, this implies •t′ ≤ M ′ +•U ′. It follows that (M ′ +•U ′)[t′〉N ′

and hence (M ′ +•U ′)
a
−→.

Now assume H− 6= ∅. By the same proof as for (b) above, case H− 6= ∅,
there is a transition u ∈ H− that is enabled in MH . So MH [u〉M1 for
some M1 ∈ [M0〉N , and M1 = M ′ + •U ′ + (M0 − M ′0) + JH + uK. By
Condition 5f of Theorem 9 (still with empty U), •u ∩ •t = ∅, and thus
M1[t〉. By Condition 4 of Theorem 9 there exists an H1 ∈ NF such that
ℓ(H1)≡∅, JH1K= JH +uK, and f(H1)= f(H +u)>f(H). Thus M1 = MH1

and f(HM ′,U−H1) < f(HM ′,U−H). By induction we obtain (M ′+•U ′)
a
−→.

By the above reasoning, there is a t′ ∈ T ′ such that ℓ′(t′) = ℓ(t) and
(M ′ +•U ′)[t′〉. Now take any u′ ∈ U ′. Then there must be an u ∈ U with
ℓ′(u′) = ℓ(u). Since M [t〉, we have (M +•U)[{t}+{u}〉 and by Condition 5g
we obtain •t′ ∩ •u′ = ∅. It follows that M ′[t′〉, and hence M ′

a
−→. �

Theorem 9 will be applied in Section 5.3 to show the correctness of our conflict
replicating implementation N of a given net N ′. A crucial observation about
N is that its internal transitions can be partitioned into a set T+ of transitions
(3 boxes in Figure 5.5) that have to occur before firing executeij (for some i and
j) and a set T− of transitions (14 boxes) that can only occur afterwards. In
the construction of our bisimulation we consider markings of the form M ′ +
•U ′+(M0−M

′
0)+ JHK, where H is a signed multiset of internal transitions that

tells how much the marking deviates from the marking M ′ + •U ′ + (M0−M ′0)
of N . The bisimulation relates both markings of N to the marking M ′+ •U ′ of
N ′. When an internal transition of N fires, the related marking of N ′ remains
the same. However, when N fires a visible transition executeij then the related
marking of N ′ becomes M ′ + •U ′ + JiK, so in view of the structural property in
Lemma 15(1), a new set H ′ can be calculated as H ′ := H −G, where G is the
signed multiset for which JiK = Jexecuteij + GK. A consequence of this is that
elements of T+ only occur with positive multiplicities in H , whereas elements
of T− occur only with negative multiplicities.

To be precise, it may be that two different sets H1 and H2 yield the same
token replacement, i. e. JH1K = JH2K. As a result of this, there may be multiple
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ways to write a marking as M ′ + •U ′ + (M0−M ′0) + JHK for given M ′ and U ′.
The above applies only when converting the signed multisets H to a normal
form NF that eliminates this ambiguity.

For given M ′ and U ′, the multiset HM ′,U is an upper bound of the possible
choices of H for which M ′+ •U ′+(M0−M ′0)+ JHK can be a reachable marking.
This is expressed by Condition 5c. If all internal transitions in HM ′,U have fired,
the next transition must be an external one. Now the conditions of Theorem 9
guarantee that as long as this upper bound is not reached, the net N can
perform internal actions, and when it is reached (and possibly also beforehand)
it can perform the same actions as the net N ′ under marking M ′. Condition 4
moreover guarantees that this upper bound will be reached in finitely many
steps. Due to the need to renormalise the signed multisets H after adding
elements to them, this is not straightforward.

These considerations imply that transitions fired by N ′ can be simulated by
N . The other direction involves similar arguments, together with an application
of Lemma 16.

Digression: Interleaving semantics

Above, a method is presented for establishing the equivalence of two nets, one
of which known to be unlabelled, up to branching ST-bisimilarity with explicit
divergence. Here, we simplify this result into a method for establishing the
equivalence of the two nets up interleaving branching bisimilarity with explicit
divergence. This result might be of independent interest, but is not used in the
following.

Lemma 17 Let N = (S, T, F,M0, ℓ) and N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be two fini-

tary nets, N ′ being unlabelled. Suppose there is a relation B ⊆ NS × NS′

such
that

(a) M0BM ′0,

(b) if M1BM ′1 and M1
τ
−→M2 then M2BM ′1,

(c) if M1BM ′1 and M1
a
−→ M2 for some a ∈ Act then ∃M ′2. M

′
1

a
−→ M ′2 ∧

M2BM ′2,

(d) if M1BM
′
1 and M ′1

a
−→ for some a ∈ Act then either M1

a
−→ or M1

τ
−→

(e) and there is no infinite sequence M
τ
−→ M1

τ
−→ M2

τ
−→ · · · with MBM ′

for some M ′.

Then N and N ′ are interleaving branching bisimilar with explicit divergence.

Proof: Analogous to the proof of Lemma 14. �

Lemma 18 Let N = (S, T, F,M0, ℓ) and N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be two fini-

tary nets, N ′ being unlabelled, with S′ ⊆ S and M ′0 = M0 ↾ S′. Suppose:
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1. ∀t∈T, ℓ(t) 6= τ. ∃t′∈T ′, ℓ(t′) = ℓ(t). ∃G ∈ NT , ℓ(G) ≡ ∅. Jt′K = Jt+GK.

2. For anyG∈ZT with ℓ(G)≡∅, M ′∈[M ′0〉N ′ andM := M ′+(M0−M
′
0)+JGK∈

[M0〉N , it holds that:

(a) there is no infinite sequence M
τ
−→M1

τ
−→M2

τ
−→ · · · ,

(b) if M ′
a
−→ with a ∈ Act then M

a
−→ or M

τ
−→

(c) and if M
a
−→ with a ∈ Act then M ′

a
−→.

Then N and N ′ are interleaving branching bisimilar with explicit divergence.

Proof: Define B ⊆ NS × NS′

by

MBM ′ :⇔M ′∈[M ′0〉N ′∧∃G∈ZT . M = M ′+(M0−M
′
0)+JGK∈[M0〉N∧ℓ(G) ≡ ∅.

It suffices to show that B satisfies Conditions (a)–(e) of Lemma 17.

(a) Take G = ∅.

(b) Suppose M1BM ′1 and M1
τ
−→M2. Then ∃G ∈ ZT. M1 = M ′1+(M0−M ′0)+

JGK ∧ ℓ(G) ≡ ∅ and ∃t ∈ T. ℓ(t) = τ ∧M2 = M1 + JtK = M ′1 + (M0 −M ′0) +
JG + tK. Moreover, M1 ∈ [M0〉N and hence M2 ∈ [M0〉N . Furthermore,
M ′1 ∈ [M ′0〉N ′ and ℓ(G+ t) ≡ ∅, so M2BM ′1.

(c) Suppose M1BM ′1 and M1
a
−→ M2. Then ∃G ∈ ZT. M1 = M ′1 + (M0 −

M ′0) + JGK ∧ ℓ(G) ≡ ∅ and ∃t ∈ T. ℓ(t) = a 6= τ ∧ M2 = M1 + JtK =
M ′1+(M0−M ′0)+ JG+ tK. Moreover, M1 ∈ [M0〉N and hence M2 ∈ [M0〉N .
Furthermore, M ′1 ∈ [M ′0〉N ′ . By Condition 1 of Lemma 18, ∃t′ ∈ T ′, ℓ(t′) =
ℓ(t). ∃Gt ∈ NT , ℓ(Gt) ≡ ∅. JtK = Jt′ − GtK. Substitution of Jt′ − GtK for t
yields M2 = M ′1+ Jt′K+(M0−M ′0)+ JG−GtK. By Condition 2c, M ′1

a
−→, so

M ′1
a
−→ M ′2 for some M ′2 ∈ [M ′0〉N ′ . As t′ is the only transition in T ′ with

ℓ′(t′) = a, we must have M ′1[t
′〉M ′2. So M ′1+ Jt′K = M ′2. Since ℓ(G−Gt) ≡ ∅

it follows that M2BM ′2.

(d) Follows directly from Condition 2b.

(e) Follows directly from Condition 2a. �

The above is a variant of Lemma 15 that requires Condition b only for U = U ′ =
∅, and allows to conclude that N and N ′ are interleaving branching bisimilar
(instead of branching ST-bisimilar) with explicit divergence. Likewise, the below
is a variant of Theorem 9 that requires Condition 5 only for U = U ′ = ∅, and
misses Condition 5g.

Theorem 10 Let N = (S, T, F,M0, ℓ) and N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be finitary

nets, with N ′ unlabelled, S′ ⊆ S, and M ′0 = M0 ↾ S′. Suppose there exist sets
T+ ⊆ T and T− ⊆ T and a class NF ⊆ ZT , such that

1–4. Conditions 1–4 from Theorem 9 hold, and
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5. For every reachable marking M ′ ∈ [M ′0〉N ′ there is an HM ′ ∈ NT+ with
ℓ(HM ′) ≡ ∅, such that for each H ∈ NF with M := M ′ + (M0 −M ′0) +
JHK ∈ [M0〉N one has:

(a) MM ′ := M ′ + (M0 −M ′0) + JHM ′K ∈ NS ,

(b) if M ′
a
−→ with a ∈ Act then MM ′

a
−→,

(c) H ≤ HM ′ ,

(d) if H(u) < 0 then u ∈ T−,

(e) if H(u) < 0 and H(t) > 0 then •u ∩ •t = ∅,

(f) if H(u) < 0 and M [t〉 with ℓ(t) 6= τ then •u ∩ •t = ∅.

Then N and N ′ are interleaving branching bisimilar with explicit divergence.

Proof: A straightforward simplification of the proof of Theorem 9. �

5.3 The Correctness Proof

We now apply the preceding theory to prove the correctness of the conflict
replicating implementation.

Theorem 11 Let N ′ be a finitary unlabelled structural conflict net without a
fully reachable pure M. Then I(N ′) ≈∆

bSTb N
′.

Proof: Let N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be the given finitary unlabelled structural

conflict net without a fully reachable pure M, and N = (S, T, F,M0, ℓ) be its
conflict replicated implementation I(N ′). This convention (at the expense of
primes in the statement of the theorem) pays off in terms of a significant reduc-
tion in the number of primes in this thesis.

For future reference, Table 5.2 provides a place-oriented representation of
the conflict replicating implementation of a given net N ′ = (S′, T ′, F ′,M ′0, ℓ

′),
with the macros for reversible transitions expanded. Here T← = {initialisej |

j ∈ T ′} ∪ {transferhj | h <# j ∈ T ′}, (transferhj )
far = {transhj -out} and similarly

(initialisej)
far = {prejk | k ≥

# j} ∪ {transhj -in | h <# j}.

We will obtain Theorem 11 as an application of Theorem 9. Following the
construction of N described in Section 5.1.3, we indeed have S′ ⊆ S and M ′0 =
M0 ↾ S

′. Let T+ ⊆ T be the set of transitions

distributep initialisej · fire transferhj · fire (5.7)
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Place Pretransitions arc weights Posttransitions arc weights for all

p

{

finalisei F ′(i, p)

distributep (if p• 6= ∅)

p ∈ S′, i ∈ •p
p ∈ S′

pc

{

distributep

initialisec · undone
F ′(p, c)

initialisec · fire F ′(p, c)

fetch
p,c
i,j F ′(p, i)

p ∈ S′, c ∈ p•

j ≥# i ∈ p•

πc (marked) initialisec · reseti initialisec · fire i
#
= c ∈ T ′

preij

{

initialisei · fire
executeij

executeij
initialisei · undo(preij)

j ≥# i ∈ T ′

transhj -in

{

initialisej · fire
transferhj · undone

transferhj · fire

initialisej · undo(trans
h
j -in)

h <# j ∈ T ′

transhj -out

{

transferhj · fire

executeij

executeij
transferhj ·undo(trans

h
j -out)

h <# j ∈ T ′, i ≤# j

πj#l (marked)

{

fetchedij

transfer
j

l
· resetc (if j < l)

executeij

transfer
j

l
· fire (if j < l)

i ≤# j ≤# l ∈ T ′, c
#
= l

fetch
p,c
i,j -in executeij fetch

p,c
i,j j ≥# i ∈ T ′, p ∈ •i, c ∈ p•

fetch
p,c
i,j -out fetch

p,c
i,j fetchedij j ≥# i ∈ T ′, p ∈ •i, c ∈ p•

undoi(t) executeij · fire t · undoi, t · elidei j ≥# i ∈ T ′, t ∈ Ωi

reseti(t) fetchedij t · reseti, t · elidei j ≥# i ∈ T ′, t ∈ Ωi

acki(t) t · reseti, t · elidei finalisei i ∈ T ′, t ∈ Ωi

fired(t) t · fire t · undoi t ∈ T←, Ωi ∋ t

ρi(t) t · undoi t · reseti t ∈ T←, Ωi ∋ t

take(f, t) t · undoi t · undo(f) t ∈ T←, Ωi ∋ t, f ∈ t far

took(f, t) t · undo(f) t · undone t ∈ T←, f ∈ t far

ρ(t) t · undone t · reseti t ∈ T←, Ωi ∋ t

Table 5.2: The conflict replicating implementation.

for any applicable values of p∈ S′ and h, j ∈ T ′. Furthermore, T− := (T \ (T+ ∪
{executeij | i ≤

# j ∈ T ′})). We start with checking Conditions 1, 2 and 3 of
Theorem 9.

1. Let <+ be the partial order on T+ given by the order of listing in (5.7) –
so initialisei ·fire <+ transferhj ·fire, for any i ∈ T ′ and h <# j ∈ T ′, but the

transitions transferhj ·fire and transferkl ·fire for (i, j) 6= (k, l) are unordered.
By examining Table 5.2 we see that for any place with a pretransition t
in T+, all its posttransitions u in T+ appear higher in the <+-ordering:
t <+ u. From this it follows that F ↾ (S ∪ T+) is acyclic.

2. Let <− be the partial order on T− given by the column-wise order of the
following enumeration of T−:

t · undoi
transfer

h
j · undo(f)

transferhj · undone
initialisej · undo(f)
initialisej · undone

fetch
p,c
i,j

fetchedij
t · reseti
t · elidei
finalise

i
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for any t ∈ {initialisej , transfer
h
j } and any applicable values of f ∈S, p∈S′,

and h, i, j, c∈T ′. By examining Table 5.2 we see that for any place with a
pretransition t in T−, all its posttransitions u in T− appear higher in the
<−-ordering: t <− u. From this it follows that F ↾ (S ∪ T−) is acyclic.

3. The only transitions t ∈ T with ℓ(t) 6= τ are executeij , with i ≤# j ∈ T ′.

So take i ≤# j ∈ T ′. Then the only transition t′ ∈ T ′ with ℓ′(t′) =
ℓ(executeij) is i. Now two statements regarding i and executeij need to
be proven. For the first, note that, for any p ∈ •i, the places p, pi
and preij are faithful w.r.t. T+ and S′ ∪ {s ∈ S | M0(s) > 0}. Hence

p distributep pi initialisei · fire preij executeij is a faithful path from p to

executeij . The arc weight of this path is F ′(p, i). Thus •i ≤ ∗executeij .

The second statement holds because, for all i ≤# j ∈ T ′,

JiK =
q
executeij +

∑

p∈•i

(

F ′(p, i) · distributep +
∑

c∈p•

fetch
p,c
i,j

)

+

fetched
i
j + finalise

i +
∑

t∈Ωi

t · elidei
y
.

(5.8)

To check that these equations hold, note that

JdistributepK = −{p}+ {pc | c ∈ p•},
JexecuteijK = −{πj#l | l ≥# j}+ {fetchp,ci,j -in | p ∈

•i, c ∈ p•}
+{undoi(t) | t ∈ Ωi},

Jfetchp,ci,j K = −{fetch
p,c
i,j -in} − F ′(p, i) · {pc}+ {fetch

p,c
i,j -out},

JfetchedijK = −{fetchp,ci,j -out | p ∈
•i, c ∈ p•}+ {πj#l | l ≥# j}

+{reseti(t) | t ∈ Ωi},
Jt · elideiK = −{undoi(t), reseti(t) | t ∈ Ωi}+ {acki(t) | t ∈ Ωi},
JfinaliseiK = −{acki(t) | t ∈ Ωi}+

∑

r∈i•

F ′(i, r) · {r}.

Before we define the class NF ⊆ ZT of signed multisets of transitions in normal
form, and verify conditions 4 and 5, we derive some properties of the conflict
replicating implementation N = I(N ′).

Claim 1 For any M ′ ∈ ZS′

and G ∈ ZT with M := M ′+(M0−M ′0)+JGK ∈ NS

and for each i ∈ T ′ and t ∈ Ωi we have

G(t · elidei) +G(t · undoi) ≤
∑

j≥#i

G(executeij) (5.9)

G(finalisei) ≤ G(t · elidei) +G(t · reseti) ≤
∑

j≥#i

G(fetchedij) (5.10)

G(t · reseti) ≤ G(t · undoi). (5.11)

Moreover, for each t ∈ T← and f ∈ t far ,
∑

{ω|t∈Ωω}

G(t · resetω) ≤ G(t · undone) ≤ G(t · undo(f)) ≤
∑

{ω|t∈Ωω}

G(t · undoω) ≤ G(t · fire)

(5.12)
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and for each appropriate c, h, i, j, l ∈ T ′ and p ∈ S′:

G(fetchedij) ≤ G(fetchp,ci,j ) ≤ G(executeij) (5.13)

G(initialisej · fire) ≤ 1 +
∑

ω

G(initialisej · resetω) (5.14)

G(transferhj ·fire)−G(transferhj ·undone) ≤ G(initialisej ·fire)
−G(initialisej ·undo(transhj -in))

(5.15)

G(transferjl · fire) +
∑

i≤#j G(executeij) ≤ 1 +
∑

ω G(transferjl ·resetω)
+
∑

i≤#j G(fetchedij)
(5.16)

if M [executeij〉 then 1 ≤ G(initialisei·fire)
−G(initialisei·undo(preij))

(5.17)

if ∃i. M [executeij〉 then 1 ≤ G(transferhj ·fire)

−G(transferhj ·undo(trans
h
j -out))

(5.18)

F ′(p, c)·
(

G(initialisec · fire)−G(initialisec · undone)
)

+
∑

j≥#i∈p• F ′(p, i) ·G(fetchp,ci,j ) ≤ G(distributep)
(5.19)

G(distributep) ≤ M ′(p) +
∑

{i∈T ′|p∈i•}

G(finalisei). (5.20)

Proof: For any i ∈ T ′ and t ∈ Ωi, we have

M(undoi(t)) =
(

∑

j≥#i

G(executeij)
)

−G(t · elidei)−G(t · undoi) ≥ 0,

given that M ′(undoi(t)) = (M0 −M ′0)(undoi(t)) = ∅. In this way, the place
undoi(t) gives rise to the inequation (5.9) about G. Likewise, the places acki(t),
reseti(t) and ρi(t), respectively, contribute (5.10) and (5.11), whereas ρ(t),
took(t), take(t) and fired(t) yield (5.12). Note that for j

#
= l, we have G(transferjj ·

t) = 0 regardless of t as no such transition exists in N . The remaining inequa-
tions then arise from fetch

p,c
i,j -out, fetch

p,c
i,j -in, πj , trans

h
j -in, πj#l, pre

i
j , trans

h
j -out,

pc and p, respectively.

(5.16) can be rewritten as T j
l +

∑

i≤#j E
i
j ≤ 1, where T j

l := G(transferjl ·

fire)−
∑

ω G(transferjl · resetω) and Ei
j := G(executeij)−G(fetchedij). By (5.12)

∑

ω G(transferjl · reseti) ≤ G(transferjl · fire), so T j
l ≥ 0, and likewise, by (5.13),

Ei
j ≥ 0 for all i ≤# j. Hence, for all i ≤# j ≤# l ∈ T ′,

0 ≤ T j
l ≤ 1 0 ≤ Ei

j ≤ 1 T j
l +

∑

i≤#j

Ei
j ≤ 1. (5.21)

In our next claim we study triples (M,M ′, G) with

(A) M ∈ [M0〉N , M ′ ∈ [M ′0〉N ′ and G ∈ ZT ,
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(B) M = M ′ + (M0 −M ′0) + JGK,

(C) G(finalisei) = 0 for all i ∈ T ′,

(D) G(distributep) ≤M ′(p) for all p ∈ S′,

(E) G(fetchedkl ) ≥ 0 for all k ≤# l ∈ T ′,

(F) G(distributep) ≥ F ′(p, i) ·G(executeij) for all i ≤
# j ∈ T ′ and p ∈ •i,

(G) 0 ≤ G(executeij) ≤ 1 for all i ≤# j ∈ T ′,

(H) G(distributep) ≥ F ′(p, j) ·G(executeij) for all i ≤
# j ∈ T ′ and p ∈ •j,

(I) (in the notation of (5.21)) if Ei
j = 1 with i ≤# j ∈ T ′ then T h

j = 1 for all

h <# j,

(J) there are no j ≥# i
#
= k ≤# l ∈ T ′ with (i, j) 6= (k, ℓ), G(executeij)> 0 and

G(executekl )> 0,

(K) there are no i ≤# j
#
= k ≤# l ∈ T ′ with (i, j) 6= (k, ℓ), G(executeij)> 0 and

G(executekl )> 0.

Given such a triple (M1,M
′
1, G1) and a t ∈ T , we define next(M1,M

′
1, G1, t) =:

(M,M ′, G) as follows: Let G2 := G1 + {t}. Take M := M1 + JtK = M ′1 +
(M0 − M ′0) + JG2K. In case t is not of the form finalisei we take M ′ :=
M ′1 ∈ [M ′0〉N ′ and G := G2 ∈ ZT . In case t = finalisei for some i ∈ T ′ then
1 = G2(finalise

i) ≤
∑

j≥#iG2(execute
i
j) =

∑

j≥#iG1(execute
i
j) from (C), (5.10)

and (5.13), so by (G) and (J) there is a unique j ≥# i with G1(execute
i
j) = 1.

We take M ′ := M ′1 + JiK and G := G2 −Gi
j , where Gi

j is the right-hand side of
(5.8).

Claim 2

(1) IfM1[t〉 and (M1,M
′
1, G1) satisfies (A)-(K), then so does next(M1,M

′
1, G1, t).

(2) For any M ∈ [M0〉N there exist M ′ and G such that (A)-(K) hold.

Proof: (2) follows from (1) via induction on the reachability of M . In case
M = M0 we take M ′ := M ′0 and G := ∅. Clearly, (A)–(K) are satisfied.

Hence we now show (1). Let (M,M ′, G) := next(M1,M
′
1, G1, t). We check

that (M,M ′, G) satisfies the requirements (A)–(K).

(A) By construction, M ∈ [M0〉N and G ∈ ZT . If t is not of the form finalise
i

we have M ′ =M1 ∈ [M ′0〉N ′ . Otherwise, by (D) and (F) we have M ′1(p) ≥
G1(distributep) ≥ F ′(p, i) for all p ∈ •i, and hence M ′1[i〉. This in turn
implies that M ′ = M ′1 + JiK ∈ [M ′0〉N ′ .

(B) In case t is not of the form finalisei we have

M = M1 + JtK = M ′1 + (M0 −M ′0) + JG1 + tK = M ′ + (M0 −M ′0) + JGK.

In case t = finalisei we have M = M ′1 + (M0 −M ′0) + JG2K = M ′ + (M0 −
M ′0) + JGK, using that JiK = JGi

j K.
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(C) In case t = finalisei we have G(finalisei) = G1(finalise
i) + 1−Gi

j (finalise
i) =

0 + 1− 1 = 0.
Otherwise G(finalisei) = G1(finalise

i) + 0 = 0 + 0 = 0.

(D) This follows immediately from (C) and (5.20).

(E) The only time that this invariant is in danger is when t = finalise
i. Then

G = G1 + {finalisei} − Gi
j for a certain j ≥# i with G1(execute

i
j) = 1.

By (J)4 G1(execute
i
l) ≤ 0 for all l ≥# i with l 6= j. Hence by (5.13)

G1(fetched
i
l) ≤ 0 for all such l. By (C) G2(finalise

i) = G1(finalise
i) + 1 = 1,

so by (5.10)
∑

l≥#i G1(fetched
i
l) =

∑

l≥#i G2(fetched
i
l) > 0; hence it must

be that G1(fetched
i
j)>0. By (E)4 G1(fetched

k
l )≥0 for all k ≤# l∈T ′. Given

that Gi
j (fetched

i
j) = 1 and Gi

j (fetched
k
l ) = 0 for all (k, l) 6= (i, j), we obtain

G(fetchedkl ) ≥ 0 for all k ≤# l ∈ T ′.

(F) Take i≤#j ∈ T ′ and p∈ •i. There are two occasions where the invariant is
in danger: when t = executeij and when t = finalisek with k ∈ T ′. First let

t = executeij . Then M1[execute
i
j〉. Thus,

G(distributep)
≥ F ′(p, i) ·

(

G(initialisei · fire)−G(initialisei · undone)
)

+
∑

h≥#g∈p• F ′(p, g) ·G(fetchp,ig,h)

≥ F ′(p, i) ·
(

G(initialisei · fire)−G(initialisei · undone)
)

+
∑

h≥#g∈p• F ′(p, g) ·G(fetchedgh)

≥ F ′(p, i) ·
(

G(initialisei · fire)−G(initialisei · undone)
)

+F ′(p, i) ·G(fetchedij)

≥ F ′(p, i) ·
((

G(initialisei · fire)−G(initialisei · undo(preij))
)

+G(fetchedij)
)

≥ F ′(p, i) ·
(

1 +G(fetchedij)
)

≥ F ′(p, i) ·G(executeij)

by (5.19), (5.13), (E), (5.12), (5.17) and (5.21), respectively. By (5.12)
G(initialisei · fire) − G(initialisei · undone) ≥ 0. So by (5.19), (E), and
(5.13) G(distributep) ≥ 0. For this reason we may assume, w.l.o.g., that
G(executeij) ≥ 1.

In the other case have G = G1 + {finalise
k} − Gk

l for certain l ≥# k with
G1(execute

k
l ) = 1. Since Gi

j (execute
i
j)≥ 0, we also have G1(execute

i
j) ≥ 1

as explained under the construction of next . Using (J) this implies that
¬(i

#
= k) or (i, j) = (k, l). In the latter case G(executeij) = G1(execute

i
j) −

Gi
j (execute

i
j) = 1−1 = 0, contradicting our assumption. In the former case

p /∈ •k, so Gk
l (distributep) = 0 and hence G(distributep) = G1(distributep) ≥

F ′(p, i) ·G1(execute
i
j) = F ′(p, i) ·G(executeij).

4We use (J) and (E) for G1 only, making use of the induction hypothesis.



5.3. THE CORRECTNESS PROOF 93

(G) That G(executeij) ≥ 0 follows from (E) and (5.13). If G(executeij) ≥ 2

for some i ≤# j ∈ T ′ then M ′(p) ≥ G(distributep) ≥ 2 · F ′(p, i) for
all p ∈ •i, using (D) and (F), so M ′[2 · {i}〉N ′ . Since N ′ is a finitary
structural conflict net, it has no self-concurrency, so this is impossible.

(H) Take i ≤# j ∈ T ′ and p ∈ •j. The case i = j follows from (F), so assume
i <# j. By (5.12) we have G(initialisei · fire) − G(initialisei · undone) ≥ 0.
So by (5.19), (E), and (5.13) G(distributep) ≥ 0. Hence, using (G), we
may assume, w.l.o.g., that G(executeij) = 1. We need to investigate the
same two cases as in the proof of (F) above. First let t = executeij . Then

M1[execute
i
j〉. Thus,

G(distributep)

≥
F ′(p, j) ·

(

G(initialisej · fire)−G(initialisej · undone)
)

+
∑

h≥#g∈p• F ′(p, g) ·G(fetchp,jg,h)
(by (5.19))

≥ F ′(p, j) ·

(

G(initialisej · fire)
−G(initialisej · undone)

)

(by (E) and (5.13))

≥ F ′(p, j) ·

(

G(initialisej · fire)
−G(initialisej · undo(transij-in))

)

(by (5.12))

≥ F ′(p, j) ·
(

G(transferij · fire)−G(transferij · undone) (by (5.15))

≥ F ′(p, j) ·

(

G(transferij · fire)

−G(transferij · undo(trans
i
j-out))

)

(by (5.12))

≥ F ′(p, j) (by (5.18)).

Now let t = finalise
k with k ∈ T ′. We have G = G1 + {finalisek} − Gk

l

for certain l ≥# k with G1(execute
k
l ) = 1. Since Gi

j (execute
i
j) ≥ 0, we

also have G1(execute
i
j) ≥ 1. By (K) this implies that ¬(j

#
= k) or (i, j) =

(k, l). In the latter case G(executeij) = G1(execute
i
j) − Gi

j (execute
i
j) =

1 − 1 = 0, contradicting our assumption. In the former case p /∈ •k, so
Gk

l (distributep) = 0 and hence G(distributep) = G1(distributep) ≥ F ′(p, j) ·
G1(execute

i
j) = F ′(p, j) ·G(executeij).

(I) Let i≤#j ∈ T ′ and h <# j. Since, for all k ≤# l ∈ T ′, Gk
l (transfer

h
j · fire) =

∑

ω Gk
l (transfer

h
j ·resetω)=0 and Gk

l (execute
i
j) = Gk

l (fetched
i
j), the invariant

is preserved when t has the form finalise
b. Using (5.21), it is in danger only

when t = executeij or t = transferhj · resetω for some ω with transferhj ∈ Ωω.

First assume M1[execute
i
j〉 and T h

j = G1(transfer
h
j ·fire)−

∑

ω G1(transfer
h
j ·

resetω) = 0. Then

1 ≤ G1(transfer
h
j · fire)−G1(transfer

h
j · undo(trans

h
j -out)) (by (5.18))

≤ G1(transfer
h
j · fire)−

∑

ω G1(transfer
h
j · resetω) = 0 (by (5.12)),

which is a contradiction.
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Next assume t = transferhj · resetk with k
#
= j, and Ei

j = 1. By (E) and (G)
the latter implies that G1(execute

i
j) = 1 and G1(fetched

i
j) = 0. Then

0 = G1(finalise
k) (by (C))

≤ G1(transfer
h
j · elidek) +G1(transfer

h
j · resetk) (by (5.10))

< G(transferhj · elidek) +G(transferhj · resetk)

≤
∑

l≥#k G(fetchedkl ) (by (5.10)).

Hence G1(fetched
k
l ) =G(fetchedkl )> 0 for some l ≥# k, and by (5.13) also

G1(execute
k
l ) > 0. Using (K) we obtain (i,j)=(k, l), thereby obtaining a

contradiction (0 =G1(fetched
i
j) =G1(fetched

k
l )> 0).

(J) Let j ≥# i
#
= k ≤# l ∈ T ′ with (i, j) 6= (k, ℓ). The invariant is in danger

only when t= executeij or t = executekl . W.l.o.g. let t = executekl , with
G1(execute

k
l ) = 0 and G1(execute

i
j)≥ 1.

Making a case distinction, first assume G(fetchedij)≥ 1. Using (D), (F)
and that G(executekl ) = 1, M ′(p) ≥ G(distributep) ≥ F ′(p, k) for all p ∈ •k.
Likewise, M ′(p) ≥ G(distributep) ≥ F ′(p, i) for all p ∈ •i. Moreover, just
as in the proof of (F), we derive, for all p ∈ •i ∩ •k,

M ′(p) ≥ G(distributep)
≥ F ′(p, k) ·

(

G(initialisek · fire)−G(initialisek · undone)
)

+
∑

h≥#g∈p• F ′(p, g) ·G(fetchp,kg,h)

≥ F ′(p, k) ·
(

G(initialisek · fire)−G(initialisek · undone)
)

+
∑

h≥#g∈p• F ′(p, g) ·G(fetchedgh)

≥ F ′(p, k) ·
(

G(initialisek · fire)−G(initialisek · undone)
)

+F ′(p, i) ·G(fetchedij)
≥ F ′(p, k) ·

(

G(initialisek · fire)−G(initialisek · undo(prekl ))
)

+F ′(p, i) ·G(fetchedij)
≥ F ′(p, k) + F ′(p, i)

by (D), (5.19), (5.13), (E), (5.12) and (5.17), respectively. It follows that
M ′[{k}+{i}〉. As i

#
= k and N ′ is a finitary structural conflict net, this is

impossible. (Note that this argument holds regardless whether i = k.)

Now assume G(fetchedij)≤0. Then, in the notation of (5.21), Ei
j=1. As

G1(execute
k
l ) = 0, (E) and (5.13) yield G1(fetched

k
l ) = 0. Hence we have

G(executekl ) = 1 and G(fetchedkl ) = 0, so Ek
l = 1. We will conclude the

proof by deriving a contradiction from Ei
j = Ek

l = 1. In case j = l this
contradiction emerges immediately from (5.21). By symmetry it hence
suffices to consider the case j < l.

By (D) and (H) we have M ′(p) ≥ G(distributep) ≥ F ′(p, j) for all p ∈ •j,
so M ′[j〉. Likewise M ′[l〉 and, using (F), M ′[i〉 and M ′[k〉. Since j

#
= i

#
= k

and N ′ has no fully reachable visible pure M, j
#
= k. Since j

#
= k

#
= l and N ′

has no fully reachable visible pure M, j
#
= l. So j <# l. By (5.21), using

that Ei
j = 1, T j

l = 0. This is in contradiction with Ek
l = 1 and (I).
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(K) Suppose that G(executeij) > 0 and G(executekl ) > 0, with i ≤# j
#
= k ≤#

l ∈ T ′. By (D) and (H) we have M ′(p) ≥ G(distributep) ≥ F ′(p, j) for all
p ∈ •j, so M ′[j〉. Likewise, using (F), M ′[i〉 and M ′[k〉. Since i

#
= j

#
= k

and N ′ has no fully reachable visible pure M, i
#
= k. Using this, the result

follows from (J).

Claim 3 For any M ∈ [M0〉N there exist M ′ ∈ [M ′0〉N ′ and G ∈ ZT satisfying
(A)–(K) from Claim 2, and

(L) there are no j ≥# i
#
= k ≤# l ∈ T ′ with M [executeij〉 and G(executekl ) > 0,

(M) there are no i ≤# j
#
= k ≤# l ∈ T ′ with M [executeij〉 and G(executekl ) > 0,

(N) if M [executeij〉 for i ≤
# j ∈ T ′ then M ′[j〉.

Proof: GivenM , by Claim 2(2) there areM ′ and G so that the triple (M,M ′, G)
satisfies (A)–(K). Assume M [executeij〉 for some i ≤# j ∈ T ′. Let M1 := M +
JexecuteijK and G1 := G + {executeij}. By (G) G(executeij) ≥ 0, and hence

G1(execute
i
j) > 0. By Claim 2(1) the triple (M1,M

′, G1) satisfies (A)–(K).

(L) Suppose G(executekl ) > 0 for certain l ≥# k
#
= i. In case (i, j) = (k, ℓ),

G1(execute
i
j) ≥ 2, contradicting (G). In case (i, j) 6= (k, ℓ), G1 fails (J),

also a contradiction.

(M) Suppose G(executekl ) > 0 for certain l ≥# k
#
= j. Then G1 fails (G) or (K),

a contradiction.

(N) By (D) and (H) M ′(p) ≥ G1(distributep) ≥ F ′(p, j) for all p ∈ •j, so M ′[j〉.

Claim 4 If M [{executeij}+{execute
k
l }〉 for some M ∈ [M0〉N then ¬(i

#
= k).

Proof: Suppose M [{executeij}+{execute
k
l }〉 for some M ∈ [M0〉N . Then by

Claim 2(2) there exist M ′ ∈ [M ′0〉N ′ and G ∈ ZT satisfying (A)–(K). Let
M1 := M + Jexecutekl K and G1 := G+ {executekl }. By Claim 2(1) the triple
(M1,M

′, G1) satisfies (A)–(K). Let M2 := M1 + JexecuteijK and let G2 := G1+
{executeij}. Again by Claim 2(1), also the triple (M2,M

′, G2) satisfies (A)–(K).
By (G) G(executeij)≥ 0, so in case (i, j) = (k, l) we obtain G2(execute

i
j)≥ 2,

contradicting (G). Hence (i, j) 6= (k, l). Moreover, we have G2(execute
k
l ) > 0

and G2(execute
i
j) > 0. Now (J) implies ¬(i

#
= k).

For any t ∈ {initialisej , transfer
h
j } with h, j ∈T ′, and any ω ∈ Ω with t ∈ Ωω, we

write

t(ω) := t · fire+ t · undoω +
(

∑

f∈t far

t · undo(f)
)

+ t · undone+ t · resetω .

The transition t has no preplaces of type in, nor postplaces of type out. By
checking in Table 5.1 or Figure 5.3 that each other place occurs as often in
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•u(ω) + (u · elideω)• as in u(ω)• + •(u · elideω), one verifies, for any ω ∈ Ω with
t ∈ Ωω, that Jt(ω)K = Jt · elideωK. (5.22)

Let ≡ be the congruence relation on finite signed multisets of transitions gen-
erated by

t(ω) ≡ t · elideω (5.23)

for all t ∈ {initialisej , transferhj | h, j ∈ T ′} and ω ∈ Ω with Ωω ∋ t. Here
congruence means that G1 ≡G2 implies k ·G1 ≡ k ·G2 and G1 +H ≡G2 +H
for all k ∈ Z and H ∈ ZT . Using (5.22) G1 ≡ G2 implies JG1K = JG2K.

Claim 5 If M ′ = JGK for M ′ ∈ ZS′

and G ∈ ZT such that for all i ∈ T ′ we have
G(finalisei)= 0 and either ∀j ≥# i. G(executeij)≥ 0 or ∀j ≥# i. G(executeij)≤ 0,
then G≡ ∅.

Proof: Let M ′ and G be as above. W.l.o.g. we assume G(t · elideω) = 0 for all
t ∈ {initialisej , transferhj } and all ω ∈ Ω with t ∈ Ωω, for any G can be brought
into that form by applying (5.23). For each s ∈ S \ S′ we have M ′(s) = 0, and
using this the inequations (5.9)–(5.13) and (5.19) of Claim 1 turn into equations.
For each i ∈ T ′ we have G(

∑

j≥#i execute
i
j) = 0, using (the equational form of)

(5.9)–(5.11), and that G(finalisei) = 0. Since G(executeij) ≥ 0 (or ≤ 0) for all
j ≥# i, this implies that G(executeij) = 0 for each i ≤# j ∈ T ′. With (5.13) we
obtain G(fetchedij) = G(fetchp,ci,j ) = 0 for each applicable p, c, i, j. Using that
G(t · elideω) = 0 for each applicable t and ω, with (5.10)–(5.12) and (5.19) we
find G(t) = 0 for all t ∈ T .

Claim 6 LetM := M ′+(M0−M ′0)+JHK ∈ [M0〉N forM ′∈[M ′0〉N ′ andH ∈ ZT

with H(executeij) = 0 for all i ≤# j ∈ T ′.

(a) If H(finalisei) < 0 and H(finalisek) < 0 for certain i, k ∈ T ′ then ¬(i # k).

(b) If M [executeij〉 and H(finalisek) < 0 for certain i, k ∈ T ′ then ¬(i
#
= k) and

¬(j
#
= k).

(c) H(distributep) ≥ 0 for all p ∈ S′ (with p• 6= ∅).

(d) Let c
#
= i ∈ T ′. If ∀p ∈ •c. H(distributep) ≥ F ′(p, c), then H(finalisei) = 0.

(e) If M [executeij〉 with i ≤# j ∈ T ′ then M ′[j〉.

Proof: By Claim 3 there exist M ′1 ∈ [M ′0〉N ′ and G1 ∈ ZT satisfying (B)–(N)
(with M , M ′1 and G1 playing the rôles of M , M ′ and G). In particular, M =
M ′1 + (M0 −M ′0) + JG1K, G1(finalise

i) = 0 for all i ∈ T ′, and G1(execute
i
j) ≥ 0

for all i ≤# j ∈ T ′. Using (J), for each i ∈ T ′ there is at most one j ≥# i with
G1(execute

i
j) > 0; we denote this j by f(i), and let f(i) := i when there is no

such j. This makes f : T ′ → T ′ a function, satisfying G1(execute
i
j) = 0 for all

j ≥# i with j 6= f(i).



5.3. THE CORRECTNESS PROOF 97

Given that H(executeij) = 0 for all i ≤# j ∈ T ′, (5.9)–(5.11) (or (5.10) and
(5.13)) imply H(finalisei) ≤ 0 for all i ∈ T ′. Let M ′2 := M ′+

∑

i∈T ′(H(finalisei) ·

JiK) and G2 := H −
∑

i∈T ′ H(finalisei) · Gi
f(i), where Gi

j is the right-hand side

of (5.8). Then M = M ′ + (M0 − M ′0) + JHK = M ′2 + (M0 − M ′0) + JG2K,
using that JiK = JGi

f(i)K. Moreover, G2(finalise
i) = 0 for all i ∈ T ′, using that

Gi
f(i)(finalise

i) = 1.
It follows thatM ′1−M

′
2 = JG2−G1K. Moreover, we have (G2−G1)(finalise

i) =
0 for all i ∈ T ′. We proceed to show that G2−G1 satisfies the remaining precon-
dition of Claim 5. So let i ∈ T ′. In case H(finalisei) = 0, for all j ≥# i we have
G2(execute

i
j) = 0, andG1(execute

i
j) ≥ 0 by (G). Hence (G2 −G1)(execute

i
j) ≤ 0.

In case H(finalisei) < 0, we have G2(execute
i
f(i)) ≥ 1, and hence, using (G),

(G2 −G1)(execute
i
f(i)) ≥ 0. Furthermore, for all j 6= f(i), G2(execute

i
j) ≥ 0

and G1(execute
i
j) = 0, so again (G2 −G1)(execute

i
j) ≥ 0.

Thus we may apply Claim 5, which yields G2 ≡ G1. It follows that M ′2 =
M ′1 ∈ [M ′0〉N ′ .

(a) Suppose that H(finalisei) < 0 and H(finalisek) < 0 for certain i # k ∈ T ′.
Then G2(execute

i
f(i))> 0 and G2(execute

k
f(k))>0, so G1(execute

i
f(i))>0 and

G1(execute
k
f(k))> 0, contradicting (J).

(b) Suppose that M [executeij〉 and H(finalisek) < 0 for certain k
#
= i or k

#
= j.

Then G1(execute
k
f(k)) = G2(execute

k
f(k)) > 0, contradicting (L) or (M).

(c) By (a), for any given p ∈ S′ there is at most one i ∈ p• with H(finalisei) < 0.
For all i ∈ T ′ with i /∈ p• we haveGi

f(i)(distributep) = 0. First suppose k ∈ p•

satisfies H(finalisek) < 0. Then

G1(execute
k
f(k)) = G2(execute

k
f(k))

= H(executekf(k))−
∑

i∈T ′ H(finalisei) ·Gi
f(i)(execute

k
f(k))

= 0−H(finalisek),

so by (F) G1(distributep) ≥ −F ′(p, k) ·H(finalisek). Hence

H(distributep) = G2(distributep) +
∑

i∈T ′ H(finalisei) ·Gi
f(i)(distributep)

= G1(distributep) +H(finalisek) ·Gk
f(k)(distributep)

≥ − F ′(p, k) ·H(finalisek) +H(finalisek) · F ′(p, k) = 0.

In case there is no i ∈ p• with H(finalisei) < 0 we have

H(distributep) = G2(distributep) +
∑

i∈T ′

H(finalisei) ·Gi
f(i)(distributep)

= G1(distributep)≥ 0

by (F) and (G).

(d) Since H(finalisei) ≤ 0 and Gi
f(i)(distributep) ≥ 0 for all i∈T ′, also using (c),

all summands in H(distributep) +
∑

i∈T ′ −H(finalisei) ·Gi
f(i)(distributep) are
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positive. Now suppose H(finalisei) < 0 for certain i ∈ T ′. Then, using (D),
for all p ∈ •i,

M ′1(p) ≥ G1(distributep) = G2(distributep) ≥ Gi
f(i)(distributep) = F ′(p, i).

Furthermore, let c
#
= i and suppose H(distributep) ≥ F ′(p, c) for all p ∈ •c.

Then, using (D),

M ′1(p) ≥ G1(distributep) = G2(distributep) ≥ H(distributep) ≥ F ′(p, c)

for all p ∈ •c. Moreover, if p ∈ •c ∩ •i then

M ′1(p) ≥ G2(distributep)

≥ H(distributep) +Gi
f(i)(distributep)

≥ F ′(p, c) + F ′(p, i) .

Hence M ′2[{c}+{i}〉. However, since c
#
=i and N ′ is a structural conflict net,

this is impossible.

(e) Suppose M [executeij〉 with i ≤# j ∈ T ′. Then M ′1[j〉 by (N).

Now M ′ = M ′1 +
∑

k∈T ′ −H(finalisek) · JkK, with −H(finalisek) ≥ 0 for all

k ∈ T ′. Whenever −H(finalisek) > 0 then ¬(j
#
= k) by (b). Hence M ′[j〉.

We now define the class NF ⊆ ZT of signed multisets of transitions in normal
form by H ∈ NF iff ℓ(H) ≡ ∅ and, for all t ∈ {initialisej , transferhj | h, j ∈ T ′}:

(NF-1) H(t · elideω) ≤ 0 for each ω ∈ Ω,

(NF-2) H(t · undoω) ≥ 0 for each ω ∈ Ω, or H(t · fire) ≥ 0,

(NF-3) and if H(t · elideω) < 0 for any ω ∈ Ω, then H(t · undoω) ≤ 0 and
H(t · fire) ≤ 0.

We proceed verifying the remaining conditions of Theorem 9.

4. By applying (5.23), each signed multiset G ∈ ZT with ℓ(G) ≡ ∅ can
be converted into a signed multiset H ∈ NF with ℓ(H) ≡ ∅, such that
JHK = JGK. Namely, for any t ∈ {initialisej , transferhj | h, j ∈ T ′}, first of
all perform the following three transformations, until none is applicable:

(i) correct a positive count of a transition t · elideω in G by adding
t(ω)− t · elideω to G;

(ii) if both H(t · undoω) < 0 for some ω and H(t · fire) < 0, correct this
in the same way;

(iii) and if, for some ω, t·elideω has a negative and t·undoω a positive
count, add t · elideω − t(ω).
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Note that transformation (iii) will never be applied to the same ω as (i) or
(ii), so termination is ensured. Properties (NF-1) and (NF-2) then hold
for t. After termination of (i)–(iii), perform

(iv) if, for some ω, H(t ·elideω) < 0 and H(t ·fire) > 0, add t ·elideω−t(ω).

This will ensure that also (NF-3) is satisfied, while preserving (NF-1) and
(NF-2).

Define the function f : T → N by f(u) := 1 for all u ∈ T not of the form
u = t · elideω, and f(t · elideω) := f(t(ω)) (extending f to multisets as in
Definition 1). Then surely f(G) = f(H).

5. Let M ′ ∈ NS′

, U ′ ∈ NT ′

and U ∈ NT with ℓ(U) = ℓ′(U ′) and M ′ +•U ′ ∈
[M ′0〉N ′ . Since N ′ is a finitary structural conflict net, it admits no self-
concurrency, so, as •U ′ ≤ M ′ +•U ′ ∈ [M ′0〉N ′ , the multiset U ′ must be a
set. As N ′ is unlabelled, this implies that the multiset ℓ′(U ′) is a set. Since
ℓ(U) = ℓ′(U ′), also ℓ(U), and hence U , must be a set. All its elements
have the form executeij for i ≤

# j ∈ T ′, since these are the only transitions
in T with visible labels. Note that U ′ is completely determined by U ,
namely by U ′ = {i | ∃j. executeij ∈ U}. We take

HM ′,U :=
∑

p∈S′

(M ′+•U ′)(p) · {distributep}

+
∑

(M ′+•U ′)[j〉



{initialisej · fire}+
∑

h<#j, ∄executeg
h
∈U

{transferhj · fire}





Since N ′ is finitary, HM ′,U ∈ NT+ . Moreover, ℓ(HM ′,U ) ≡ ∅.

Let H ∈ NF with M := M ′ + •U ′ + (M0−M ′0) + JHK − •U ∈ NS and
M + •U ∈ [M0〉N . Since H ∈ NF, and thus ℓ(H) ≡ ∅, H(executeij) = 0.
From here on we apply Claim 1 and Claim 6 with M + •U and M ′ + •U ′

playing the rôles ofM andM ′. Note that the preconditions of these claims
are met.

That H(executeij) = 0 for all i ≤# j ∈ T ′, together with (5.9) and the
requirements (NF-1) and (NF-3) for normal forms, yields H(t · elidei) ≤ 0
as well as H(t · undoi) ≤ 0. Using this, (5.10)–(5.13) imply that

H(u) ≤ 0 for each u ∈ T−. (5.24)

Claim 7 Let c ∈ T ′ and p ∈ •c. Then

• ifH(initialisec ·fire) > 0 then H(fetchp,ci,j ) = 0 for all i ∈ p• and j ≥# i,
and

• if H(transferbc · fire) > 0 for some b <# c then H(fetchp,ci,j ) = 0 for all

i ∈ p• and j ≥# i.
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Proof: Suppose that H(t ·fire) > 0, for t = initialisec or t = transferbc. Then
(5.14) resp. (5.21) together with (5.24) implies that H(t · resetω) = 0 for
each ω with t ∈ Ωω. In order words, H(t · reseti) = 0 for each i

#
= c, so in

particular for each i ∈ p•. Furthermore, H(t · elidei) ≥ 0, by requirement
(NF-3) of normal forms. With (5.10), this yields

∑

j≥#i H(fetchedij) ≥ 0,

and (5.24) implies H(fetchedij) = 0 for each j ≥# i. Now (5.13, 5.24) gives

H(fetchp,ci,j ) = 0 for each j ≥# i ∈ p•.

We proceed to verify the requirements (5a)–(5g) of Theorem 9.

(5a) To show that MM ′,U ∈ NS , it suffices to apply it to the preplaces of
transitions in HM ′,U + U , i. e.

for all p ∈ S′

MM ′,U (p) = 0

for all p ∈ S′, j ∈ p•

MM ′,U (pj) =

{

(M ′ +•U ′)(p)− F ′(p, j) if (M ′ +•U ′)[j〉
(M ′ +•U ′)(p) otherwise

for all j ∈ T ′

MM ′,U (πj) =

{

0 if (M ′ +•U ′)[j〉
1 otherwise

for all j ≤# k ∈ T ′

MM ′,U (pre
j
k) =







1 if (M ′ +•U ′)[j〉 ∧ execute
j
k /∈ U

−1 if ¬(M ′ +•U ′)[j〉 ∧ execute
j
k ∈ U

0 otherwise
for all h <# j ∈ T ′

MM ′,U (πh#j) =

{

0 if ∃executegh ∈ U ∨ (M ′ +•U ′)[j〉
1 otherwise

for all h <# j ∈ T ′

MM ′,U (trans
h
j -in) =

{

1 if (M ′ +•U ′)[j〉 ∧ ∃executegh ∈ U
0 otherwise

for all h <# j ∈ T ′

MM ′,U (trans
h
j -out) =























1 if
(M ′ +•U ′)[j〉 ∧ ∄executegh ∈ U
∧∄executeij ∈ U

−1 if

(

¬(M ′ +•U ′)[j〉 ∨ ∃executegh ∈ U
)

∧∃executeij ∈ U
0 otherwise

.

For all these places s we indeed have that MM ′,U (s) ≥ 0, as the
circumstances yielding the two exceptions above cannot occur:

• Suppose execute
j
k ∈ U with j ≤# k ∈ T ′. Then j ∈ U ′, so •j ≤

M ′+•U ′ and (M ′+•U ′)[j〉. Consequently, MM ′,U (pre
j
k) 6= −1 for

all j ≤#k ∈ T ′.

• Suppose executeij ∈ U with i ≤# j ∈ T ′. Then •executeij ≤
•U , so

(M +•U)[executeij〉. Claim 6(e) with M +•U and M ′+•U ′ in the
rôles of M and M ′ yields (M ′ + •U ′)[j〉.
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If moreover executegh ∈ U with g ≤#h <# j, then {g}+{i} ≤ U ′,
so •{g}+•{i} ≤M ′+•U ′ and (M ′ + •U ′)[{g}+{i}〉. In particular,
g ⌣ i, and since N ′ is a structural conflict net, •g ∩ •i = ∅.
By Claim 6(e) – as above – (M ′+•U ′)[h〉, so •g ∪ •h ∪ •j ∪
•i ≤ M ′+•U ′ ∈ [M ′0〉N ′ . Moreover, since g ≤# h <# j ≥# i,
we have •g ∩ •h 6= ∅, •h ∩ •i 6= ∅ and •i ∩ •j 6= ∅. Now in
case also •h ∩ •i 6= ∅, the transitions g, h and i constitute a
fully reachable pure M; otherwise h ⌣ i and h, j and i constitute
a fully reachable pure M. Either way, we obtain a contradiction.
Consequently, MM ′,U (trans

h
j -out) 6= −1 for all h <# j ∈ T ′.

(5b) Suppose M ′
a
−→; say M ′[i〉 with ℓ′(i) = a. Let j be the largest

transition in T ′ w.r.t. the well-ordering < on T such that i ≤# j
and (M ′ + •U ′)[j〉. It suffices to show that MM ′,U [execute

i
j〉, i. e.

that MM ′,U (pre
i
j)=1, MM ′,U (trans

h
j -out)=1 for all h <# j, and also

MM ′,U (πj#l)=1 for all l >#j.

If executeij ∈ U we would have i ∈ U ′ and hence (M ′ +•U ′)[2 · {i}〉.
Since N ′ is a finitary structural conflict net, this is impossible. There-
fore executeij 6∈ U and, using the calculations from (a) above, also
MM ′,U (pre

i
j) = 1.

Let h <# j. To establish that MM ′,U (trans
h
j -out) = 1 we need to

show that there is no k ≤# j with executekj ∈ U and no g ≤# h with
execute

g
h ∈ U . First suppose executekj ∈ U for some k ≤# j. Then

k ∈ U ′ and hence (M ′ + •U ′)[{i}+{k}〉. This implies i ⌣ k, and,
as N ′ is a structural conflict net, •i ∩ •k = ∅. Hence the transitions
i, j and k are all different, with •i ∩ •j 6= ∅ and •j ∩ •k 6= ∅ but
•i ∩ •k = ∅. Moreover, the reachable marking M ′ +•U ′ enables all
three of them. Hence N ′ contains a fully reachable pure M, which
contradicts the assumptions of Theorem 11.

Next suppose executegh ∈ U for some g ≤#h. Then (M+•U)[executegh〉,
hence (M ′ +•U ′)[h〉 by Claim 6(e). Moreover, g ∈ U ′, hence (M ′ +
•U ′)[{i}+{g}〉. This implies g ⌣ i, and •g ∩ •i = ∅. Moreover,
•g ∩ •h 6= ∅, •h ∩ •j 6= ∅ and •j ∩ •i 6= ∅, while the reachable marking
M ′+•U ′ enables all these transitions. Depending on whether •h∩•i =
∅, either h, j and i, or g, h and i constitute a fully reachable pure M,
contradicting the assumptions of Theorem 11.

Let l ># j. To establish that MM ′,U (πj#l) = 1 we need to show that
there is no k ≤# j with executekj ∈ U – already done above – and that
¬(M ′ +•U ′)[l〉. Suppose (M ′ +•U ′)[l〉. Considering that j was the
largest transition with i ≤# j and (M ′+•U ′)[j〉, we cannot have i <# l.
Hence the transitions i, j and l are all different, with •i ∩ •j 6= ∅ and
•j ∩ •l 6= ∅ but •i∩ •l = ∅. Moreover, the reachable marking M ′+•U ′

enables all three of them. Hence N ′ contains a fully reachable pure M,
which contradicts the assumptions of Theorem 11.

(5c) We have to show that H(t) ≤ HM ′,U (t) for each t ∈ T .
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• In case t ∈ T− this follows from (5.24) and HM ′,U ∈ NT+.

• In case t = executeij it follows since ℓ(H) ≡ ∅.

• In case t = distributep it follows from (5.20) and (5.24).

• Next let t = initialisec · fire for some c ∈ T ′. In case H(initialisec ·
fire) ≤ 0 surely we have H(initialisec · fire) ≤ HM ′,U (initialisec ·
fire). So without limitation of generality we may assume that
H(initialisec ·fire) > 0. By (5.14, 5.24) we have H(initialisec·fire) =
1. Using (5.19), Claim 7, (5.24) and (5.20) we obtain, for all
p ∈ •c,

F ′(p, c) ·H(initialisec · fire) ≤ H(distributep) ≤ (M ′ +•U ′)(p).

Hence c is enabled underM ′+•U ′, which impliesHM ′,U (initialisec ·
fire) = 1.

• Let t=transferbc ·fire for some b<#c∈T ′. As above, we may assume
H(transferbc·fire)>0. By (5.21, 5.24) we have H(transferbc·fire) = 1.
Using (5.24) and that H(executegb ) = 0 for all g ≤# b, it follows
that (M + •U)(πb#c) = 0. Hence ¬(M + •U)[executegb〉 for all
g ≤# b, and thus ∄executegb ∈ U . For all p ∈ •c we derive

F ′(p, c) ·H(transferbc · fire)

≤ F ′(p, c) ·
(

H(transferbc · fire)−

H(transferbc · undone)
)

(5.24)
≤ F ′(p, c) ·

(

H(initialisec · fire)−
H(initialisec · undo(transbc-in))

)

(5.15)
≤ F ′(p, c) ·

(

H(initialisec · fire)−
H(initialisec · undone)

)

(5.12)
= [the same as above]+

∑

j≥#i∈p• F ′(p, i) ·H(fetchp,ci,j ) (Claim 7)

≤ H(distributep) (5.19)

≤ (M ′ +•U ′)(p) +
∑

{i∈T ′|p∈i•}

H(finalisei) (5.20)

≤ (M ′ +•U ′)(p) (5.24).

Hence (M ′ +•U ′)[c〉, and thus HM ′,U (transfer
b
c) = 1.

(5d) If u /∈ T−, yet H(u) 6= 0, then u is either distributep, initialisej · fire

or transferhj · fire for suitable p ∈ S′ or h, j ∈ T ′. For u = distributep
the requirement follows from Claim 6(c); otherwise Property (NF-2),
together with (5.12), guarantees that H(u) ≥ 0.

(5e) If H(t)>0 and H(u)<0, then t∈T+ and u∈T−. The only candidates
for •t ∩ •u 6= ∅ are

• pc ∈
•(initialisec · fire) ∩

•(fetchp,ci,j ) for p ∈ S′, c, i ∈ p• and j ≥# i,

• transbc-in ∈
•(transferbc ·fire)∩

•(initialisec ·undo(transbc-in)) for b ≤
#

c ∈ T ′.
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We investigate these possibilities one by one.

• H(initialisec · fire) > 0∧H(fetchp,ci,j ) < 0 cannot occur by Claim 7.

• SupposeH(transferbc·fire) > 0. By (5.21, 5.24) we haveH(transferbc·
fire) = 1. Through the derivation above, in the proof of require-
ment (c), using (5.24, 5.15, 5.12), Claim 7 and (5.19), we obtain
H(distributep) ≥ F ′(p, c) for all p ∈ •c. Now Claim 6(d) yields
H(finalisei) = 0 for all i

#
= c. By (5.10) and (5.24) we obtain

H(initialisec · reseti) = 0 for each such i. Hence
∑

i
#
=c

H(initialisec ·

reseti) = 0, and H(initialisec · undo(transbc-in)) = 0 by (5.12, 5.24).

(5f) If H(u) < 0 and (M +•U)[t〉 with ℓ(t) 6= τ , then t = executeij for some

i ≤# j ∈ T ′ and u ∈ T−. The only candidates for •t ∩ •u 6= ∅ are

• preij ∈
•(executeij) ∩

•(initialisej · undo(preij)) and

• transhj -out ∈
•(executeij)∩

•(transferhj ·undo(trans
h
j -out)) for h <# j.

We investigate these possibilities one by one.

• Suppose (M +•U)[executeij〉. By Claim 6(b), H(finalisek) ≥ 0 for
each k

#
= i. By (5.10) and (5.24) we obtain H(initialisei· resetk)=0

for each such k. Hence
∑

k
#
=i

H(initialisei · resetk) = 0, and thus
H(initialisei · undo(preij)) = 0 by (5.12, 5.24).

• Suppose (M +•U)[executeij〉 and h <# j. By Claim 6(b), then
H(finalisek) ≥ 0 for each k

#
= j. By (5.10) and (5.24) then follows

H(transferhj · resetk) = 0 for each such k. So
∑

k
#
=j

H(transferhj ·

resetk)=0, and H(transferhj ·undo(trans
h
j -out)) = 0 by (5.12, 5.24).

(5g) Suppose (M + •U)[{t}+{u}〉N , and i, k ∈ T ′ with ℓ′(i) = ℓ(t) and
ℓ′(k) = ℓ(u). Since the net N ′ is unlabelled, t and u must have the
form executeij and executekl for some j ># i and l ># k. Claim 4
yields ¬(i

#
= k) and hence •i ∩ •k = ∅. �

Thus, we have established that the conflict replicating implementation I(N ′) of
a finitary unlabelled structural conflict net N ′ without a fully reachable pure
M is branching ST-bisimilar with explicit divergence to N ′. It remains to be
shown that I(N ′) is essentially distributed.

Lemma 19 Let N be the conflict replicating implementation of a finitary net
N ′ = (S′, T ′, F ′,M ′0, ℓ

′); let j, l ∈ T ′, with l ># j. Then no two transitions from
the set

{executeij | i ≤
# j} ∪ {transferjl · fire} ∪ {transfer

j
l · undo(trans

j
l -out)}

∪ {executekl | k ≤
# l}

can fire concurrently.

Proof: For each i≤#j pick an arbitrary preplace qi of i. The set

{fetchqi,ii,j -in, fetch
qi,i
i,j -out | i ≤# j}

∪ {πj#l, trans
j
l -out, took(transjl -out, transfer

j
l ), ρ(transferjl )}
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is an S-invariant : there is always exactly one token in this set. This is the case
because there is exactly one token initially (on πj#l) and each transition from
N has as many (with multiplicities) preplaces as postplaces in this set. The
transitions from

{executeij | i ≤
# j} ∪ {transferjl · fire} ∪ {transfer

j
l · undo(trans

j
l -out)}

∪ {executekl | k ≤
# l}

each have a preplace in this set. Hence no two of them can fire concurrently. �

Lemma 20 Let N be the conflict replicating implementation I(N ′) of a fini-
tary unlabelled structural conflict net N ′ = (S′, T ′, F ′,M ′0, ℓ

′) without a fully
reachable pure M. Then for any i ≤# j

#
= c ∈ T ′ and f ∈ (initialisec)

far , the
transitions executeij and initialisec · undo(f) cannot fire concurrently.

Proof: Suppose these transitions can fire concurrently, say from the marking
M ∈ [M0〉N . By Claim 3, there are M ′ ∈ [M ′0〉N ′ and G ∈ ZT such that (B)–(N)
hold. Let t := initialisec, G1 := G + {t · undo(f)} and M1 := M + Jt·undo(f)K.
Then (5.12), applied to the triples (M,M ′, G) and (M1,M

′, G1), yields

∑

{ω|t∈Ωω}

G(t · resetω) ≤ G(t · undo(f)) < G1(t · undo(f)) ≤
∑

{ω|t∈Ωω}

G1(t · undoω)

=
∑

{ω|t∈Ωω}

G(t · undoω).

Hence, there is an ω with t ∈ Ωω and G(t · resetω) < G(t · undoω). This ω must
have the form k ∈ T ′ with k

#
= c. We now obtain

0 = G(finalisek) (by (C))
≤ G(t · elidek) +G(t · resetk) (by (5.10))
< G(t · elidek) +G(t · undok)
≤

∑

l≥#k G(executekl ) (by (5.9)).

Hence, there is an l ≥# k
#
=c with G(executekl ) > 0. By (M) we obtain ¬(j

#
=k), so

•j∩•k = ∅. Additionally, we have •j∩•c 6= ∅ and •c∩•k 6= ∅. By (N) we obtain
M ′[j〉, and by (D) and (F) M ′[k〉. Furthermore, by (5.12), G(t · undo(f)) <
G1(t · undo(f)) ≤ G1(t · fire) = G(t · fire), so, for all p ∈ •c,

F ′(p, c) ≤ F ′(p, c) ·
(

G(t · fire)−G(t · undo(f))
)

≤ F ′(p, c) ·
(

G(t · fire)−G(t · undone)
)

(by (5.12))
≤ G(distributep)−

∑

j≥#i∈p• F ′(p, i) ·G(fetchp,ci,j ) (by (5.19))

≤ G(distributep) (by (E) and (5.13))
≤ M ′(p) (by (D).

It follows that M ′[c〉. Thus N ′ contains a fully reachable pure M, which con-
tradicts the assumptions of Lemma 20. �
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Theorem 12 Let N be the conflict replicating implementation I(N ′) of a fini-
tary unlabelled structural conflict net N ′ without a fully reachable pure M.
Then N is essentially distributed.

Proof: We take the canonical distribution D of N , in which ≡D is the equiv-
alence relation on places and transitions generated by Condition (1) of Defi-
nition 33. We need to show that this distribution satisfies Condition (2′) of
Definition 34. A given transition t with ℓ(t) 6= τ must have the form executeij
for some i ≤# j ∈ T ′. By following the flow relation ofN one finds the places and
transitions that, under the canonical distribution, are co-located with executeij :

πj#l → transfer
j
l · fire← trans

j
l -in→ initialisel · undo(trans

j
l -in)

↓ ↑

executeij take(transjl -in, initialisel)
↑

transhj -out→ transferhj · undo(trans
h
j -out)← take(transhj -out, transfer

h
j )

↓
execute

g
j

↑
pre

g
j → initialiseg · undo(pre

g
j )← take(pregj , initialiseg)

for all l≥# j, h <# j and g ≤# j. Note that the chain starting at transferjl · fire
only exists for l ># j. We need to show that none of these transitions can
happen concurrently with executeij . For transitions transferjl · fire and execute

g
j

this follows directly from Lemma 19. For transferhj · undo(trans
h
j -out) this also

follows from Lemma 19, in which j, k and l play the rôle of the current h, i and
j. For the transitions initialisel · undo(trans

j
l -in) and initialiseg · undo(pre

g
j ) this

has been established in Lemma 20. �

Our main result follows by combining Theorems 11, 12 and 3:

Theorem 13 Let N be a finitary unlabelled structural conflict net without a
fully reachable visible pure M. Then N is distributable up to ≈∆

bSTb. �

Corollary 5 Let N be a finitary unlabelled structural conflict net. Then N is
distributable iff it has no fully reachable visible pure M. �
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Chapter 6

M-Containing Nets

6.1 Instability of Ms

Certainly, there are behavioural equivalences for which Ms are not necessar-
ily preserved by equivalent implementations, e. g. the trivial equivalence which
relates all nets.

A more insightful statement was shown in my diploma thesis:

Theorem 14 Let N be a finite, unlabelled net. There exists a finite, dis-
tributed net N ′ which is weak completed step trace equivalent to N .

Proof: Take N ′ to be the N ′′ of Theorem 5.2.1 of [Sch08]. �

The proof given in [Sch08] involves a concrete construction and comes with
an invariant property of similar flavour as the one given in Chapter 5 – but was
written before I invented the M ⊕ H resp. JHK notation. I omit it here as a
service to the reader and also because it was published as a thesis already.

This bound of instability is not exact, but covers a relevant part of the linear
time spectrum. Nonetheless, the stability of Ms between weak completed step
trace and step failures equivalence is still open.

6.2 Stability of Ms

In Theorem 8 we have already shown – as a kind of motivation – that Ms cannot
be eliminated by step failure equivalent implementations. Hence Ms are stable
for any finer equivalence relations as well.

In what follows a similar stability result is achieved for a linear time equiv-
alence, completed pomset trace equivalence, where instead of the branching
structure of the system, the causal relationship between events is considered.
The material was published in [SPG11].

As completed pomset trace equivalence is a very linear-time equivalence, it
disregards the decision structure of a system and an implementation like the

107
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a b c

Figure 6.1: A repeated pure M. A finite, 1-safe, undistributable net used as a
counterexample.

one of Figure 6.2, which simply provides a separate branch for each possible
maximal process of the original net, would be fully satisfactory. In practice
though, such an infinite implementation is unwieldy to say the least. If however
infinite implementations are ruled out, the main result of this section shows that
no valid implementation of the repeated pure M of Figure 6.1 exists.

Before we consider the first theorem of this section, let us concentrate on
two auxiliary lemmata. The first states that the careful introduction of a τ -
transition before an arbitrary transition of a net, as described below, does not
significantly influence the properties of that net.

Lemma 21 Let N = (S, T, F,M0, ℓ) be a finite, 1-safe, distributed net with
the distribution function D. Let t ∈ T . The net N ′ = (S′, T ′, F ′,M0, ℓ

′) with

• S′ = S ∪ {st},

• T ′ = T ∪ {τt},

• F ′(x, y) =



















F (x, t) iff x ∈ S, y = τt,

1 iff x = τt, y = st,

1 iff x = st, y = t,

F (x, y) otherwise, and

• ℓ′(x) =

{

τ if x = τt

ℓ(x) otherwise

is finite, 1-safe, distributed and completed pomset trace equivalent to N .

Proof: (Sketch)
N ′ is finite as only two new elements were introduced. N ′ is completed pomset
trace equivalent to N . Given a process (N, π) of N , a process of N ′ can be
constructed by refining in N every transition u in the same manner as π(u) was
in N . For the reverse direction, note that in every maximal processes of N ′,
π(u) = t =⇒ π(•u) = {st} ∧ π(•st) = {τt}. By fusing u, •u, and ••u into a
single transition v whenever π(u) = t and setting the process mapping of v to t,
a maximal process of N ′ can be transformed into a maximal process of N . For
the same reason, N ′ is also 1-safe.
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τ

a c

a c

a c

...

. . . τ

a

b

τ

b

Figure 6.2: An infinite implementation of Figure 6.1, constructed by taking
every maximal process and initially choosing one, location borders dotted.

N ′ is distributed with the distribution function

D′(x) :=

{

D(t) if x = st ∨ x = τt

D(x) otherwise .

The places in •τt are on D(t) = D′(τt). D′(st) = D(t) = D′(t). Hence all
transitions are on the same location as their preplaces. No new parallelism is
introduced, as a parallel firing of either τt or t with some other transition u can
only occur if t and u could already fire in parallel in N . �

For now we only consider 1-safe nets. Formally, we restrict ourselves to contact-
free nets, where in every reachable dependency marking M1 ∈ [M0〉d for all
t ∈ T with •t ⊆ pr1(M1)

(pr1(M1) \
•t) ∩ t• = ∅ .

For such nets, in Definition 24 we can just as well consider a transition t to
be enabled in M iff •t ⊆ pr1(M), and two transitions to be independent when
•t ∩ •u = ∅.

The later proof that Figure 6.1 is non-implementable depends crucially on
this 1-safety assumption. We conjecture however, that the result itself will hold,
even if non-safe implementations are allowed.
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Next we show, that if a dependency marking is reached twice during an exe-
cution, the dependencies of all tokens consumed and produced by a transition
firing in such a cycle are equal.

Lemma 22 Let N = (S, T, F,M0, ℓ) be a finite, 1-safe net. Moreover let
ts, ts+1, . . . , te−1, te ∈ T be a sequence of transitions leading from a reachable de-
pendency markingMbase to the same, i. e.Mbase[{ts}〉dN · · · [{te}〉

d
NMbase. Then

every ti produced tokens that were dependent on the same labels as the tokens
on its preplaces.

Proof: Assume the opposite, i. e. there is a ti for s ≤ i ≤ e such that ti
consumed an L-independent token from one of its preplaces (for some L ⊆ Act),
but produced no L-independent tokens. This L-independent token needs to be
replaced to again reach Mbase. However the replacement token needs to be
L-independent as otherwise a dependency marking different from Mbase would
be reached. This token can thus not depend on any of the tokens produced by
ti, as it would then not be L-independent. In other words, had ti not fired, a
new L-independent token could also have been produced on its preplaces, i. e. N
would not be 1-safe, violating the assumptions. Hence no such ti can be fired, or
equivalently, every ti produced tokens that were dependent on the same labels
as the tokens on its preplaces (which hence all have the same dependencies). �

We will now show that, given an arbitrary finite, 1-safe net, it is not possible in
general to find a finite, 1-safe, and distributed net which is completed pomset
trace equivalent to the original. As a counterexample, consider the repeated pure
M of Figure 6.1. It is a simple net allowing to perform several transitions of a
and c in parallel, and terminating with a single transition b. The main argument
of the following proof proceeds as follows: To perform an arbitrary number of a
and c-transitions within a finite net there has to be a loop. To terminate with
b the process has to escape from that loop by disabling all transitions leading
to a or c. Therefore either a single token is consumed that is dependent on a as
well as on c, or two different tokens – one a-dependent and one c-dependent –
are consumed. In the first case an additional iteration of the loop results in an
additional causal dependency, i. e. in a causal dependency between a and c. In
the second case the net is not distributed in the sense of Definition 33.

Theorem 15 It is in general impossible to find for a finite, 1-safe net a dis-
tributed, completed pomset trace equivalent, finite, 1-safe net.

Proof: Via the counterexample given in Figure 6.1. Suppose a finite, 1-safe,
distributed net Nimpl, which is completed pomset trace equivalent to the net
of Figure 6.1, would exist. By refining every b-labelled transition in Nimpl into
two transitions in the manner of Lemma 21, a new net N = (S, T, F,M0, ℓ) is
derived. By Lemma 21 this new net is finite, 1-safe, distributed and completed
pomset trace equivalent to the net in Figure 6.1 since Nimpl is.

N has |S| places and 3 different labels, every place can hold either no token,
or a token dependent on any possible combination of the three labels. Since N is
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finite so is |S|. Hence N has at most (1+23)|S| reachable dependency markings.
Let m := 9|S|. N is able to fire (ac)mb without any step containing more than a
single transition since the net of Figure 6.1 is and the two are assumed to be com-
pleted pomset trace equivalent. Let G1, G2, . . . Gn be the steps fired while doing
so. |Gi| = 1 for all i. In the course of firing that sequence, at least one depen-
dency marking is bound to be reached twice. Of all those dependency markings
which occur twice, we take the one occurring last while firing (ac)mb and call it
Mbase. Let Gs, Gs+1, . . . , Ge−1, Ge be a sequence of steps between two occur-
rences ofMbase, i. e.M0×{∅}[G1〉d[G2〉d · · ·Mbase[Gs〉d · · · [Ge〉dMbase · · · [Gn〉d.

Using Lemma 22 the transitions of the steps Gs to Ge can be partitioned
into subsets TX based on the dependencies of the tokens they produced and
consumed. A set TX includes all transitions producing X-dependent, (Act\X)-
independent tokens. By firing

Gs ∩ T{a}, Gs+1 ∩ T{a}, . . . , Ge ∩ T{a} (skipping empty steps)

repeatedly, Mbase
am

=⇒d. By firing

Gs ∩ T{c}, Gs+1 ∩ T{c}, . . . , Ge ∩ T{c} (skipping empty steps)

repeatedly, Mbase
cm
=⇒d. We now search for the marking, where the decision to

fire b is made.
Assume a reachable dependency marking M ′′ of N with M ′′

am

=⇒d. If
M ′′

cm
=6⇒d then M ′′′

cm
=6⇒d for all M ′′′ reachable from M ′′ since c cannot be

enabled using tokens produced by a transition labelled a or b. Otherwise there
would exist a pomset of N in which a c is causally dependent on an a or b.
Such a pomset however does not exist for the net of Figure 6.1 thereby violat-
ing the assumption of completed pomset trace equivalence. If however c is not
re-enabled after M ′′ a maximal process including finitely many c but infinitely
many a’s can be produced also leading to a pomset not present in the net of Fig-
ure 6.1. The same argument can be applied with the rôles of a and c reversed,
hence M ′′

am

=⇒d iff M ′′
cm
=⇒d.

We start from Mbase and start to fire the steps Gs, Gs+1, . . . , Gn until am

cannot be fired any more for the first time. This step always exists as after b
no further a’s or c’s may be fired. Call the single transition in that step tb. The
marking right before that transition fired, we call M , the one right after it M ′.
Not only M

am

=⇒d but also M
cm
=⇒d and not only M ′

am

=6⇒d but also M ′
cm
=6⇒d, as

both M and M ′ are reachable markings.
tb is not itself labelled b, as the refined net has a τ -transition before the b,

and once a token resides on the intermediate place, no a-transitions can be fired
any more, as otherwise a pomset where an a which is not a causal predecessor
to a b would be produced, again not existing for the net of Figure 6.1.

To disable the trace am, the transition tb needed to consume a token. If
tb had not fired, some Gi ∩ T{a}, s ≤ i ≤ e could have consumed that token,
hence that token must be a-dependent, c-independent. Similarly, tb must have
consumed a token which could have led to cm. This token needs to be c-
dependent, a-independent. Hence tb has at least two preplaces, which in turn
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are also preplaces to two different transitions, call them ta and tc, which then
lead to am and cm respectively.1 As they have common preplaces ta, tb and tc
are on the same location.

From M the net can fire am consuming only a-dependent, c-independent
tokens. It can also fire cm consuming only c-dependent, a-independent tokens.

Hence there is a sequence of steps leading from M to a marking where ta
is enabled, yet only a-dependent, c-independent tokens have been removed or
added. Similarly there is a firing sequence leading from M to a marking where
tc is enabled, yet only c-dependent, a-independent tokens have been removed
or added. As they change disjoint sets of tokens, these two firing sequences can
be concatenated, thereby leading to a marking where ta and tc are concurrently
enabled, yet they are on the same location, thereby violating the implementation
requirement that N is distributed. �

Note that the self-loops of the counterexample are not critical to the success of
the proof but any larger subnet returning the tokens would suffice.

This section only considered 1-safe nets as possible implementations. We
conjecture however, that the proof of Theorem 15 can be extended to non-safe
nets as well, as from a place where tokens of different dependency mix, a tran-
sition can always choose the most-dependent token. In particular a transition
intended to produce independent tokens cannot have such a place as a preplace.
Hence every part of the net providing independent tokens can do so without
depending on firings of labelled transitions. The number of independent tokens
produced on a place where a labelled transition consumes them is thus either
finite over every run of the system, or unbounded even without any labelled
transition ever firing. In both cases that place is unsuitable for disabling a
potentially infinitely often occurring loop. If only finitely many tokens are pro-
duced, the loop can no longer happen infinitely often, if an unbounded number
of tokens can be produced, no disabling can be guaranteed.

6.3 Infinite Number of Less Restrictive Classes

So far, we have identified partially and fully reachable Ns and fully reachable
pure Ms as crucial structures when considering distributed system implementa-
tions. Each of them is in a particular sense not distributable, and both structures
are stable with respect to branching time semantics, hence cannot be removed
without changing behaviour. As2 every fully reachable pure M also contains a
partially and fully reachable N, these two structures, respectively the net classes
defined by their absence, form a hierarchy of distributability. This hierarchy
can easily be extended in the direction of more distributability by disallowing
all conflicts, generating an even smaller, but easily implementable class of nets.

1The removal of the token leading to am and the one leading to cm must indeed be done
by a single transition tb as only a single transition was fired between M and M ′ and both
traces were possible in M but impossible in M ′.

2in self-loop free nets, to be exact
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ta,1

ta,2

ta,3

ta,4

tb,0

tc,1

tc,2

tc,3

tc,4

Figure 6.3: The arthropod net of degree 4.

The other direction however is not so clear. If by some means, Ms would be
implementable, would this allow the implementation of all nets in a distributed
fashion?

Assume a way was found to implement a prior impossible structure and waive
– for sets of transitions of size n – the requirement that two transitions need to
be co-located if they had a conflict. If these sets would be allowed to overlap,
the answer would be trivially positive even for n = 2 by putting each pair
of transitions into such a set. However, this would not model connecting some
atomic building blocks implementing a given structure distributedly, as the same
transition would find itself included in multiple blocks. To model connected
atomic building blocks, such sets of assumed-to-be distributed transitions would
need to be disjoint.

Definition 50 Let N = (S, T, F,M0, ℓ) be a net. It is distributed modulo
atomic building blocks of size n iff there exists a set Block of blocks and a block
assignment function B : T → Block∪ {⊥} with ⊥ /∈ Block and ∀b ∈ Block. n ≥
|{t | B(t) = b}| such that there exists a location function D : S ∪ T → Loc such
that ∀t, u ∈ T.(•t ∩ •u 6= ∅ ⇒ D(t) = D(u) ∨B(t) = B(u)) ∧ (t ⌣ u ⇒ D(t) 6=
D(u)).

Is there an n such that all nets are distributable modulo atomic building
blocks of size n?
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Definition 51 Let n ∈ N. The arthropod net of degree n (Figure 6.3 explains3

the name) is the net N = (S, T, F,M0, ℓ) defined as

S = {sa,i, sc,i | 1 ≤ i ≤ n}
T = {tb,0} ∪ {ta,i, tc,i | 1 ≤ i ≤ n}

F (sx,i, ty,j) =

{

1 if y = b ∨ y = x

0 otherwise

F (ty,j , sx,i) = 0
M0 = S
ℓ = IdT

Proposition 6 The arthropod net of degree n (ArNn) is not distributed mod-
ulo atomic building blocks of size n.

Proof: For each 1 ≤ i ≤ n we have that ta,i ⌣ tc,i,
•ta,i ∩

•tb,0 6= ∅, and
•tb,0 ∩ •tc,i 6= ∅. Thus for each i, we have D(ta,i) 6= D(tc,i) and hence B(ta,i) =
B(tb,0) or B(tb,0) = B(tc,i). It follows that |{t | B(t) = B(tb,0)}| ≥ n+ 1. �

Theorem 16 If N is step failures equivalent to ArNn then N is not distributed
modulo atomic building blocks of size n.

Proof: Consider any i with 1 ≤ i ≤ n. M0
{ta,i,tc,i}−−−−−−→ and M0

{tb,0}−−−→. Moreover
M0

{ta,i,tb,0}−−−−−−−6→ and M0
{tb,0,tc,i}−−−−−−−6→. Finally also M0

τX−→. Hence

〈ε, {{ta,i, tc,i}}〉, 〈ε, {{tb,0}}〉 /∈F (ArNn) = F (N)

and

〈ε, {{ta,i, tb,0}, {tb,0, tc,i}}〉 ∈F (ArNn) = F (N) .

Converting from failure pairs back to transitions in N , we find for each 1 ≤ i ≤ n
that 〈ε, {{ta,i, tc,i}}〉 /∈ F (N) hence there must exists at least one transition
labelled ta,i which is initially enabled and we shall call ua,i. From the labels
tc,i we likewise obtain enabled transitions uc,i. As the step containing both
these transitions is not in the failure set, they can fire in the same step, i. e.
ua,i ⌣ uc,i.

From 〈ε, {{tb,0}}〉 /∈F (N) we obtain an enabled transition ub,0 labelled tb,0.

As 〈ε, {{ta,i, tb,0}}〉 ∈ F (N), it follows that ua,i and ub,0 must not fire in
the same step. As both are enabled after the empty trace ε, there must be a
preplace shared between them, i. e. •ua,i ∩ •ub,0 6= ∅. The same argument can
be repeated for uc,i giving

•uc,i ∩ •ub,0 6= ∅.
This essentially replicated ArNn into the new net, in particular for each

i we have D(ua,i) 6= D(uc,i) and with ua,i ⌣ uc,i then B(ua,i) = B(ub,0)
or B(ub,0) = B(uc,i). Hence |{u | B(u) = B(ub,0)}| ≥ n + 1 and N is not
distributed modulo atomic building blocks of size n. �

3The obvious name for n = 3 would be insect nets, for n = 4 spider nets.
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The above proof is basically a replicated application of Lemma 12 and
Lemma 13, which in their original form however do not yield the necessary
identification of the ub,0 transition across different i, hence the above, longer
proof.

From Theorem 16 follows that the classes of nets distributable with respect to
step failures equivalence modulo atomic building blocks of size n are strictly
larger for increasing n ≥ 2. The hierarchy of distributability can thus be ex-
tended towards synchronous nets infinitely.

If one so desires, this classification can be made finer and non-linear by not
allowing arbitrary building blocks of size n, but only certain structures. Of
course one would need to show stability of each of these structures with respect
to step failures equivalence to establish that they indeed induce a new net class,
but the proof method of Theorem 16 can be applied to a variety of structures.

Nonetheless, the above already suffices to shatter the hope of creating arbi-
trary distributed systems after having found a synchronisation mechanism for
n transitions.
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Chapter 7

Distributed Net
Implementation

After many theorems have been presented about nets, it would be nice to test
whether these insights can be applied practically. Also, in the spirit of Knuth’s
“Beware of bugs in the above code; I have only proved it correct, not tried it”
[Knu] the complex proof of Section 5.3 should be followed by actually trying it
out. To this end, (a prototype of) a compiler was developed, which takes a dis-
tributed net and compiles its locations to Linux binaries which connect to each
other using TCP/IP networking and actually execute the net in a distributed
fashion. The electronic version of this thesis contains the compiler sources as a
pdf-attachment to this page.

Within this framework, the constructions presented in Section 5.1.3 and
Figure 5.1 have been implemented to increase the degree of distribution of a
net. This allows to experimentally measure the concrete overhead of these
transformations in practice.

As feared, these experiments also highlighted an oversight in the construction
given in [GGSU13] which was corrected during preparation of this thesis: Where
we originally had l ># j it should have said l ≥# j.

7.1 Petri Net Markup Language

Instead of implementing yet another Petri net editor, I decided to use an existing
net description language as input format to facilitate interoperability between
the compiler and other Petri net tools. It appears that the Petri net markup
language presented at http://www.pnml.org and in ISO/IEC 15909 was de-
signed specifically for this rôle as an interchange format. It is an XML-based
markup language partially derived from the language used by the Petri net ker-
nel 1 project. It defines basic net elements, includes facilities for graphical layout
information and can be extended to accommodate various Petri net extensions

1http://www2.informatik.hu-berlin.de/top/pnk/index.html
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compiler/compiler.pl

#!/usr/bin/perl

use strict;
use warnings;
use utf8;

use XML::Simple;
use Data::Dumper;
use Digest::SHA qw(sha256_hex);

my $stochastic = 0;
my $centralized = 0;
my $centralLocation = [];
my $help = "Usage: compiler [--stochastic] [--central] <input.pnml> <input.code> <output-directory>";

while(@ARGV > 3) {
  if($ARGV[0] eq '--stochastic') {
    shift;
    $stochastic = 1;
  } elsif($ARGV[0] eq '--central') {
    shift;
    $centralized = 1;
  } else {
    die $help;
  }
}

die $help unless(@ARGV == 3);

my ($input, $actions, $output) = @ARGV;

my @extraIncludes;
my %actions;
my $actionLabel;

open ACTIONS, '<', $actions or die "cannot open $actions: $!";
while(my $line = <ACTIONS>) {
  chomp $line;
  if($actionLabel) {
    if($line =~ /^}/) {
      $actionLabel = undef;
    } else {
      push @{$actions{$actionLabel}->{'code'}}, $line;
    }
  } else {
    if($line =~ /^#/) {
      push @extraIncludes, $line;
    } elsif($line =~ /^([^:]+): (\(.*\)) {$/) {
      $actionLabel = $1;
      $actions{$actionLabel} = {
        'condition' => $2,
        'code' => [],
      };
    }
  }
}
close ACTIONS;

my $xml = XMLin($input, ForceArray => ['place', 'transition', 'arc'], KeyAttr => []);
my $page = $xml->{'net'}->{'page'};

my %places = map {
  ($_->{'id'} => {
    'type' => 'place',
    'id' => $_->{'id'},
    'initial' => $_->{'initialMarking'}->{'text'},
    'pre' => [],
    'post' => [],
  })
}  @{$page->{'place'}};
my %transitions = map {
  ($_->{'id'} => {
    'type' => 'transition',
    'id' => $_->{'id'},
    'label' => $_->{'name'}->{'text'},
    'pre' => [],
    'post' => [],
  })
}  @{$page->{'transition'}};

my $idx = 0;
foreach my $p (sort keys %places) {
  $places{$p}->{'idx'} = $idx++;
}
$idx = 0;
foreach my $t (sort keys %transitions) {
  $transitions{$t}->{'idx'} = $idx++;
}

foreach my $arc (@{$page->{'arc'}}) {
  if(exists $places{$arc->{'source'}}) {
    push @{$places{$arc->{'source'}}->{'post'}}, $transitions{$arc->{'target'}};
    push @{$transitions{$arc->{'target'}}->{'pre'}}, $places{$arc->{'source'}};
  } elsif(exists $transitions{$arc->{'source'}}) {
    push @{$transitions{$arc->{'source'}}->{'post'}}, $places{$arc->{'target'}};
    push @{$places{$arc->{'target'}}->{'pre'}}, $transitions{$arc->{'source'}};
  } else {
    die "Arc source node does not exist: " . $arc->{'source'};
  }
}

my @locations;

foreach my $t (sort { $a->{'id'} cmp $b->{'id'} } values %transitions) {
  my $location = $centralized? $centralLocation: [];

  my @queue;
  push @queue, $t;
  while(@queue) {
    my $u = pop @queue;
    next if $u->{'location'};

    $u->{'location'} = $location;
    push @$location, $u;
    foreach my $p (@{$u->{'pre'}}) {
      $p->{'location'} = $location;
      push @$location, $p;
      push @queue, @{$p->{'post'}};
    }
  }

  push @locations, $location if @$location;
}

foreach my $p (sort { $a->{'id'} cmp $b->{'id'} } values %places) {
  my $location = $centralized? $centralLocation: [];

  if(not defined $p->{'location'}) {
    $p->{'location'} = $location;
    push @$location, $p;
  }

  push @locations, $location if @$location;
}

@locations = values %{{ map { ($_, $_) } @locations }};

foreach my $i (0 .. $#locations) {
  my $location = $locations[$i];

  print "=== $i ===\n";
  foreach my $x (@$location) {
    print "$x->{'id'}\n";
  }
}

my $compileId = sha256_hex(Dumper($xml) . time());

mkdir $output unless -d $output;

my $locationCount = @locations;
my $placeCount = keys %places;

open MAKE, '>', $output . '/Makefile' or die "cannot open Makefile: $!";
print MAKE "all: ../*.impl ../*.h directory " . join(' ', 0 .. $#locations) . "\n\n";
print MAKE "run: all\n";
print MAKE "\txterm -e directory &\n";
print MAKE "\tsleep 1\n";
foreach my $loc (0 .. $#locations) {
  print MAKE "\txterm -e '$loc 127.0.0.1:4242 exit | tee $loc.log; sleep 10' &\n";
}
print MAKE "\n";
print MAKE "run-log: all\n";
print MAKE "\t(\\\n";
print MAKE "\t\tdirectory &\\\n";
print MAKE "\t\tsleep 1;\\\n";
foreach my $loc (0 .. $#locations) {
  print MAKE "\t\t$loc 127.0.0.1:4242 noexit &\\\n";
}
print MAKE "\t) 2>&1 | tee log\n";
print MAKE "\n";
print MAKE <<'EOM';
%: %.c ../directory.h ../directory.impl ../node.h ../node.impl ../common.impl
	gcc -W -Wall -Wextra -Werror -pedantic -I .. -o $@ $<
EOM
close MAKE;

open CODE, '>', $output . '/directory.c' or die "cannot open directory.c: $!";
print CODE <<"EOC";
#include "directory.h"

#define COMPILE_ID "$compileId"

#define LOCATION_COUNT $locationCount
struct sockaddr_in nodes[LOCATION_COUNT];

#include "directory.impl"
EOC
close CODE;

my @placeLocations;
foreach my $p (sort keys %places) {
  push @placeLocations, grep { $places{$p}->{'location'} == $locations[$_] } 0 .. $#locations;
}
my $placeLocations = join ', ', @placeLocations;

foreach my $i (0 .. $#locations) {
  my $sendRelations = join ', ', map { outgoingCommunications($i, $_) } 0 .. $#locations;
  my @localTransitions = sort grep { $transitions{$_}->{'location'} == $locations[$i] } keys %transitions;

  my @initialMarkingOfLocation;
  foreach my $p (sort keys %places) {
    if($places{$p}->{'location'} == $locations[$i]) {
      push @initialMarkingOfLocation, $places{$p}->{'initial'};
    } else {
      push @initialMarkingOfLocation, 0;
    }
  }
  my $initialMarkingOfLocation = join ', ', @initialMarkingOfLocation;

  my $filename = $output . '/' . $i . '.c';
  open CODE, '>', $filename or die "cannot open $filename: $!";
  print CODE <<"EOC";
#include "node.h"

#include <stdlib.h>
#include <stdio.h>

#define COMPILE_ID "$compileId"

#define LOCATION_COUNT $locationCount
#define LOCATION $i

const int sendsToLocation[LOCATION_COUNT] = { $sendRelations };
const int placeLocations[$placeCount] = { $placeLocations };
int tokens[$placeCount] = { $initialMarkingOfLocation };

int fire() {
EOC

  if($stochastic) {
    my $transitionCount = scalar @localTransitions;
    my $transitionCountForArrays = ($transitionCount or 1);

    print CODE <<"EOC";
  int enabled[$transitionCountForArrays];
  int chosen[$transitionCountForArrays];
  int enabledCount = 0;
  int i;

EOC

    my $transitionNumber = 0;
    foreach my $t (@localTransitions) {
      my $preconditions = join ' && ', "1",
        map { "tokens[$_->{'idx'}]" } @{$transitions{$t}->{'pre'}};
      my $actionConditions = ($actions{$transitions{$t}->{'label'}}->{'condition'} or '(1)');

      print CODE <<"EOC";
  enabled[$transitionNumber] = $preconditions && $actionConditions;
EOC
      ++$transitionNumber;
    };

    print CODE <<"EOC";

  for(i = 0; i < $transitionCount; ++i) {
    if(!enabled[i]) continue;

    chosen[enabledCount] = i;
    ++enabledCount;
  }
  
  if(!enabledCount) return 0;

  switch(chosen[rand() % enabledCount]) {
EOC
    $transitionNumber = 0;
    foreach my $t (@localTransitions) {
      my $unmarkPreconditions = join ";\n      ",
        map { "--tokens[$_->{'idx'}]" } @{$transitions{$t}->{'pre'}};
      my $markPostconditions = join ";\n      ",
        map { "sendToken($_->{'idx'})" } @{$transitions{$t}->{'post'}};
      my $transitionLabel = $transitions{$t}->{'label'};
      my $actionLines = join "\n", @{$actions{$transitionLabel}->{'code'} or []};

      print CODE <<"EOC";
    case $transitionNumber: /* $transitionLabel */
      $unmarkPreconditions;
      $markPostconditions;
      $actionLines
      return 1;

EOC
      ++$transitionNumber;
    }

    print CODE <<"EOC";
    default: break;
  }

  fprintf(stderr, "Invalid transition number chosen.\\n");
  exit(1);
EOC
  } else {
    foreach my $t (@localTransitions) {
      my $preconditionsMarked = join ' && ', "1",
        map { "tokens[$_->{'idx'}]" } @{$transitions{$t}->{'pre'}};
      my $unmarkPreconditions = join ";\n    ",
        map { "--tokens[$_->{'idx'}]" } @{$transitions{$t}->{'pre'}};
      my $markPostconditions = join ";\n    ",
        map { "sendToken($_->{'idx'})" } @{$transitions{$t}->{'post'}};
      my $actionConditions = ($actions{$transitions{$t}->{'label'}}->{'condition'} or '(1)');
      my $transitionLabel = $transitions{$t}->{'label'};
      my $actionLines = join "\n", @{$actions{$transitionLabel}->{'code'} or []};

      print CODE <<"EOC";
  if($preconditionsMarked && $actionConditions) { /* $transitionLabel */
    $unmarkPreconditions;
    $markPostconditions;
    $actionLines
    return 1;
  }
EOC
    }
  }

  print CODE <<"EOC";
  return 0;
}

int enabled() {
EOC

  my $transitionCount = scalar @localTransitions;
  my $transitionCountForArrays = ($transitionCount or 1);

  print CODE <<"EOC";
  int enabledCount = 0;
EOC

  my $transitionNumber = 0;
  foreach my $t (@localTransitions) {
    my $preconditions = join ' && ', "1",
      map { "tokens[$_->{'idx'}]" } @{$transitions{$t}->{'pre'}};
    my $actionConditions = ($actions{$transitions{$t}->{'label'}}->{'condition'} or '(1)');

    print CODE <<"EOC";
  enabledCount += $preconditions && $actionConditions;
EOC
    ++$transitionNumber;
  };

  print CODE <<"EOC";
  return enabledCount;
}

#include "node.impl"
EOC
  close CODE;
}

sub outgoingCommunications {
  my ($from, $to) = @_;

  return 0 if($from == $to);
  my %targets = map { ($_, 1) } @{$locations[$to]};
  return scalar grep { grep { exists $targets{$_} } @{$_->{'post'}} } @{$locations[$from]};
}
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compiler/Makefile

DEPS=common.impl directory.h directory.impl node.h node.impl distribute-conflictrepl.pl compiler.pl

all:
	for net in produce-consumer repeating-m-5 repeating-m trivial; do \
	  for mode in plain conflictrepl plain-central conflictrepl-central; do \
	    mkdir -p "$$net-$$mode"; \
	    $(MAKE) "$$net-$$mode"; \
	  done; \
	done

%.code %-conflictrepl.pnml: %.pnml $(DEPS)
	distribute-conflictrepl.pl $*.pnml $*-conflictrepl.pnml $*.code

%-plain: %.code %.pnml $(DEPS)
	compiler.pl --stochastic $*.pnml $*.code $@
	( cd $@; $(MAKE) )

%-conflictrepl: %.code %-conflictrepl.pnml $(DEPS)
	compiler.pl --stochastic $*-conflictrepl.pnml $*.code $@
	( cd $@; $(MAKE) )

%-plain-central: %.code %.pnml $(DEPS)
	compiler.pl --stochastic --central $*.pnml $*.code $@
	( cd $@; $(MAKE) )

%-conflictrepl-central: %.code %-conflictrepl.pnml $(DEPS)
	compiler.pl --stochastic --central $*-conflictrepl.pnml $*.code $@
	( cd $@; $(MAKE) )

tikzplots: \
	producer-consumer-conflictrepl-central/2015-05-19.laptop.tikz \
	producer-consumer-conflictrepl/2015-05-19.laptop.tikz \
	producer-consumer-conflictrepl/2015-07-28.1.tikz \
	producer-consumer-conflictrepl/2015-07-28.2.tikz \
	producer-consumer-conflictrepl/2015-07-28.3.tikz \
	producer-consumer-conflictrepl/2015-07-28.4.tikz \
	producer-consumer-plain-central/2015-05-19.laptop.tikz \
	producer-consumer-plain/2015-05-19.laptop.tikz \
	producer-consumer-plain/2015-07-28.1.tikz \
	producer-consumer-plain/2015-07-28.2.tikz \
	producer-consumer-plain/2015-07-28.3.tikz \
	producer-consumer-plain/2015-07-28.4.tikz \
	repeating-m-5-conflictrepl-central/2015-05-19.laptop.tikz \
	repeating-m-5-conflictrepl-central/texput.tikz \
	repeating-m-5-conflictrepl/2015-05-19.laptop.tikz \
	repeating-m-5-conflictrepl/2015-07-28.1.tikz \
	repeating-m-5-conflictrepl/2015-07-28.2.tikz \
	repeating-m-5-conflictrepl/2015-07-28.3.tikz \
	repeating-m-5-conflictrepl/2015-07-28.4.tikz \
	repeating-m-5-plain-central/2015-05-19.laptop.tikz \
	repeating-m-5-plain/2015-05-19.laptop.tikz \
	repeating-m-5-plain/2015-07-28.1.tikz \
	repeating-m-5-plain/2015-07-28.2.tikz \
	repeating-m-5-plain/2015-07-28.3.tikz \
	repeating-m-5-plain/2015-07-28.4.tikz \
	repeating-m-conflictrepl-central/2015-05-19.laptop.tikz \
	repeating-m-conflictrepl/2015-05-19.laptop.tikz \
	repeating-m-conflictrepl/2015-07-28.1.tikz \
	repeating-m-conflictrepl/2015-07-28.2.tikz \
	repeating-m-conflictrepl/2015-07-28.3.tikz \
	repeating-m-conflictrepl/2015-07-28.4.tikz \
	repeating-m-plain-central/2015-05-19.laptop.tikz \
	repeating-m-plain/2015-05-19.laptop.tikz \
	repeating-m-plain/2015-07-28.1.tikz \
	repeating-m-plain/2015-07-28.2.tikz \
	repeating-m-plain/2015-07-28.3.tikz \
	repeating-m-plain/2015-07-28.4.tikz

producer-consumer-plain/2015-07-28.%.tikz: producer-consumer-plain/2015-07-28.%.log tikzplot.pl
	tikzplot.pl $< --max 15000 --scale 2500

producer-consumer-conflictrepl/2015-07-28.%.tikz: producer-consumer-conflictrepl/2015-07-28.%.log tikzplot.pl
	tikzplot.pl $< --max 3500 --scale 500

repeating-m-conflictrepl/2015-07-28.%.tikz: repeating-m-conflictrepl/2015-07-28.%.log tikzplot.pl
	tikzplot.pl $< --max 3500 --scale 500

repeating-m-5-plain/2015-07-28.%.tikz: repeating-m-5-plain/2015-07-28.%.log tikzplot.pl
	tikzplot.pl $< --max 35000 --scale 5000

repeating-m-5-conflictrepl/2015-07-28.%.tikz: repeating-m-5-conflictrepl/2015-07-28.%.log tikzplot.pl
	tikzplot.pl $< --max 1200 --scale 500

producer-consumer-plain/2015-05-19.laptop.tikz: producer-consumer-plain/2015-05-19.laptop.log tikzplot.pl
	tikzplot.pl $< --max 40000 --scale 5000

producer-consumer-conflictrepl/2015-05-19.laptop.tikz: producer-consumer-conflictrepl/2015-05-19.laptop.log tikzplot.pl
	tikzplot.pl $< --max 8000 --scale 1000

%.tikz: %.log tikzplot.pl
	tikzplot.pl $<







compiler/common.impl

int readAll(int fd, char *buf, int len) {
  int r = len;
  while(r) {
    int l;
    
    r -= l = read(fd, buf + len - r, r);
    if(l <= 0) {
      fprintf(stderr, "Failed to read: %s\n", strerror(errno));
      return 1;
    }
  }

  return 0;
}

int writeAll(int fd, char *data, int len) {
  int w = len;
  while(w) {
    int l;

    w -= l = write(fd, data + len - w, w);
    if(len < 0) {
      fprintf(stderr, "Failed to write: %s\n", strerror(errno));
      return 1;
    }
  }

  return 0;
}

/* vim: set syn=c: */







compiler/repeating-m-5.pnml
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compiler/trivial.pnml
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compiler/directory.impl

#include <sys/types.h>
#include <sys/socket.h>

#include <string.h>
#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>

#include "common.impl"

int main(void) {
  struct sockaddr_in addr;
  int s, b, l;
  int i;
  int yes = 1;

  for(i = 0; i < LOCATION_COUNT; ++i) {
    nodes[i].sin_addr.s_addr= INADDR_ANY;
  }

  s = socket(AF_INET, SOCK_STREAM, 0);
  if(s < 0) {
    fprintf(stderr, "Could not create socket: %s\n", strerror(errno));
    return 1;
  }
  if(setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int)) < 0) {
    fprintf(stderr, "could not set SO_REUSEADDR");
    return 1;
  }

  addr.sin_family = AF_INET;
  addr.sin_port = htons(4242);
  addr.sin_addr.s_addr = INADDR_ANY;

  b = bind(s, (struct sockaddr *)&addr, sizeof(addr));
  if(b < 0) {
    fprintf(stderr, "Could not bind address: %s\n", strerror(errno));
    return 1;
  }

  l = listen(s, LOCATION_COUNT);
  if(l < 0) {
    fprintf(stderr, "Could not listen: %s\n", strerror(errno));
    return 1;
  }

  while(1) {
    struct sockaddr_in clientAddr;
    socklen_t clientAddrLen;
    int c, w, r;
    uint32_t location;
    char compileId[256];

    clientAddrLen = sizeof(clientAddr);
    c = accept(s, (struct sockaddr *)&clientAddr, &clientAddrLen);
    if(c < 0) {
      fprintf(stderr, "Failed to accept client connection: %s\n", strerror(errno));
      continue;
    }
    fprintf(stdout, "Accepted new client.\n");
    fflush(stdout);

    r = readAll(c, compileId, strlen(COMPILE_ID));
    if(r) {
      close(c);
      continue;
    }
    compileId[strlen(COMPILE_ID)] = 0;
    if(strcmp(compileId, COMPILE_ID)) {
      fprintf(stderr, "Wrong compile id connected: %s vs. %s\n", compileId, COMPILE_ID);
      close(c);
      continue;
    }
    r = readAll(c, (char *)&location, 4);
    if(r) {
      close(c);
      continue;
    }
    fprintf(stdout, "Location id: %d\n", location);
    fflush(stdout);
    r = readAll(c, (char *)&clientAddr.sin_port, sizeof(clientAddr.sin_port));
    if(r) {
      close(c);
      continue;
    }

    if(location >= LOCATION_COUNT) {
      fprintf(stderr, "Location outside bounds tried to register.\n");
      close(c);
      continue;
    }

    memcpy(nodes + location, &clientAddr, sizeof(struct sockaddr_in));

    w = sizeof(nodes);
    while(w) {
      int len;

      w -= len = write(c, (char *)nodes + sizeof(nodes) - w, w);
      if(len <= 0) {
        fprintf(stderr, "Failed to write to client: %s\n", strerror(errno));
        break;
      }
    }

    close(c);
    fprintf(stdout, "Handling finished.\n");
    fflush(stdout);
  }
}

/* vim: set syn=c: */







compiler/network.pl

#!/usr/bin/perl

use strict;
use warnings;
use Data::Dumper;

my @locations;

my $IP_local = '192.168.2.10';
my $IP_remote = '192.168.2.100';
my $LOGIN_remote = 'protocol@' . $IP_remote;

open MAKE, "Makefile" or die "cannot find Makefile: $!";
while (my $line = <MAKE>) {
  if ($line =~ /xterm -e '(\d+) 127.0.0.1:4242 exit | tee \d+.log; sleep 10' &/) {
    push @locations, $1;
  }
}

close MAKE;

my $logname = $ARGV[0] or die "usage: ./network.pl <output.log>";

my %remotes;

while(keys(%remotes) < int(@locations / 2)) {
  my $remote = int(rand(@locations));
  $remotes{$remote} = 1;
}

open STDOUT, '>', $logname or die "Cannot redirect STDOUT: $!";
print STDOUT "Remote " . join(',', keys %remotes) . "\n";

###

if(not fork) {
  system("./directory");
  exit 0;
}

sleep 1;

foreach my $l (@locations) {
  if ($remotes{$l}) {
    system("scp $l $LOGIN_remote:/tmp/$l");
    if(not fork) {
      system("ssh $LOGIN_remote /tmp/$l $IP_local:4242 noexit");
      exit 0;
    }
  } else {
    if(not fork) {
      system("./$l $IP_local:4242 noexit");
      exit 0;
    }
  }
}

while(my $line = <STDIN>) {
  if($line =~ /quit/) {
    last;
  }
}

system("killall directory");

foreach my $l (@locations) {
  if ($remotes{$l}) {
    system("ssh $LOGIN_remote rm /tmp/$l");
    system("ssh $LOGIN_remote killall $l");
  } else {
    system("killall $l");
  }
}







compiler/directory.h

#ifndef DIRECTORY_H
#define DIRECTORY_H

#include <netinet/ip.h>

#endif







compiler/node.impl

#include <stdio.h>
#include <netdb.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/time.h>

#include "common.impl"

#define BUFSIZE BUFSIZ

struct sockaddr_in neighbourAddresses[LOCATION_COUNT];
int neighbourConnections[LOCATION_COUNT] = { 0 };
int incomingConnections[LOCATION_COUNT] = { 0 };
char *incomingConnectionsBuffer[LOCATION_COUNT] = { 0 };
int incomingConnectionsBufferFill[LOCATION_COUNT] = { 0 };
int incomingConnectionsUsed = 0;
struct sockaddr_in incomingAddr;
int incomingSocket;

uint64_t firings = 0;
uint64_t lastStatistics = 0;

uint64_t now() {
  struct timeval tv;
  int ret;
  
  ret = gettimeofday(&tv, NULL);
  if(ret) {
    fprintf(stderr, "[%d] Statistics unavailable; gettimeofday failed: %s\n", LOCATION, strerror(errno));
    return 0;
  }

  return tv.tv_sec * (uint64_t)1000000 + tv.tv_usec;
}

int determineNeighbourConnections(char *directory) {
  int done;
  struct hostent *dir;
  char *dirStr, *portStr;
  int dirPort;
  struct sockaddr_in dirAddr;
  int i;
  int missingLocation;

  for(i = 0; i < LOCATION_COUNT; ++i) {
    neighbourAddresses[i].sin_addr.s_addr = INADDR_ANY;
  }

  dirStr = strtok(directory, ":");
  portStr = strtok(NULL, "");
  
  if(!dirStr || !portStr) {
    fprintf(stderr, "[%d] Could not parse directory connection info.\n", LOCATION);
    return 1;
  }

  dir = gethostbyname(dirStr);
  if(!dir) {
    fprintf(stderr, "[%d] Could not resolve %s: %s\n", LOCATION, dirStr, strerror(errno));
    return 1;
  }
  if(dir->h_addrtype != AF_INET) {
    fprintf(stderr, "[%d] Directory server not reachable via IP.\n", LOCATION);
    return 1;
  }

  dirPort = -1;
  sscanf(portStr, "%d", &dirPort);
  if(dirPort < 0) {
    fprintf(stderr, "[%d] Could not parse directory port.\n", LOCATION);
    return 1;
  }

  dirAddr.sin_family = AF_INET;
  dirAddr.sin_port = htons(dirPort);
  memcpy(&dirAddr.sin_addr, dir->h_addr, 4);

  done = 0;
  while(!done) {
    int i, r, w;
    int s, c;
    uint32_t me;
    
    s = socket(AF_INET, SOCK_STREAM, 0);
    if(s < 0) {
      fprintf(stderr, "[%d] Could not create socket: %s\n", LOCATION, strerror(errno));
      return 1;
    }

    c = connect(s, (struct sockaddr *)&dirAddr, sizeof(dirAddr));
    if(c < 0) {
      fprintf(stderr, "[%d] Connect failed: %s\n", LOCATION, strerror(errno));
      return 1;
    }

    me = LOCATION;
    w = writeAll(s, COMPILE_ID, strlen(COMPILE_ID));
    if(w) return w;
    w = writeAll(s, (char *)&me, sizeof(me));
    if(w) return w;
    w = writeAll(s, (char *)&incomingAddr.sin_port, sizeof(incomingAddr.sin_port));
    if(w) return w;

    done = 1;
    for(i = 0; i < LOCATION_COUNT; ++i) {
      r = readAll(s, (char *)(neighbourAddresses + i), sizeof(struct sockaddr_in));
      if(r) {
        close(s);
        fprintf(stderr, "[%d] Directory closed connection.\n", LOCATION);
        return 1;
      }

      if(sendsToLocation[i] && neighbourAddresses[i].sin_addr.s_addr == INADDR_ANY) {
        if(done) {
          missingLocation = i;
        }

        done = 0;
      }
    }

    if(!done) {
      fprintf(stdout, "[%d] Waiting for all locations to become available, smallest open: %d...\n", LOCATION, missingLocation);
      fflush(stdout);
      sleep(1);
    }
    close(s);
  }

  fprintf(stdout, "[%d] Neighbour addressess collected, starting to connect...\n", LOCATION);
  fflush(stdout);

  return 0;
}

int populateNeighbourConnections() {
  int i;
  int currentlyConnecting = -1;
  int currentlyConnectingIndex = 0;

  while(1) {
    fd_set readSet, writeSet;
    int maxFd;
    struct timeval timeout;

    if(currentlyConnecting < 0) {
      for(i = 0; i < LOCATION_COUNT; ++i) {
        if(sendsToLocation[i] && neighbourConnections[i] == 0) {
          int c, r;

          currentlyConnectingIndex = i;
          currentlyConnecting = socket(AF_INET, SOCK_STREAM, 0);

          fprintf(stdout, "[%d] Starting to connect location %d...\n", LOCATION, i);
          fflush(stdout);

          if(currentlyConnecting < 0) {
            fprintf(stderr, "[%d] Could not create socket: %s\n", LOCATION, strerror(errno));
            return 1;
          }

          r = fcntl(currentlyConnecting, F_GETFL);
          if(r < 0) {
            fprintf(stdout, "[%d] Could not get fd flags: %s\n", LOCATION, strerror(errno));
            return 1;
          }
          r |= O_NONBLOCK;
          r = fcntl(currentlyConnecting, F_SETFL, r);
          if(r < 0) {
            fprintf(stdout, "[%d] Could not set fd flags: %s\n", LOCATION, strerror(errno));
            return 1;
          }

          c = connect(currentlyConnecting, (struct sockaddr *)(neighbourAddresses + i), sizeof(struct sockaddr_in));
          if(c > 0) {
            neighbourConnections[i] = c;
            currentlyConnecting = -1;
          } else if(errno == EINPROGRESS) {
            /* this is what we expect actually */
          } else {
            fprintf(stdout, "[%d] Could not establish connection to location %d: %s\n", LOCATION, i, strerror(errno));
            close(currentlyConnecting);
            return 1;
          }

          break;
        }
      }

      if(i == LOCATION_COUNT) {
        break;
      }
    }

    FD_ZERO(&readSet);
    FD_ZERO(&writeSet);
    FD_SET(incomingSocket, &readSet);
    maxFd = incomingSocket;

    if(currentlyConnecting >= 0) {
      FD_SET(currentlyConnecting, &writeSet);
      if(currentlyConnecting > maxFd) maxFd = currentlyConnecting;
    }

    timeout.tv_sec = 1;
    timeout.tv_usec = 0;

    select(maxFd + 1, &readSet, &writeSet, NULL, &timeout);

    if(FD_ISSET(incomingSocket, &readSet)) {
      if(incomingConnectionsUsed >= LOCATION_COUNT) {
        fprintf(stderr, "[%d] Incoming connection array full.\n", LOCATION);
      } else {
        int newCon = accept(incomingSocket, NULL, NULL);

        if(newCon < 0) {
          fprintf(stderr, "[%d] Cannot accept incoming connection: %s\n", LOCATION, strerror(errno));
        } else {
          fprintf(stdout, "[%d] Accepted connection.\n", LOCATION);
          fflush(stdout);

          incomingConnections[incomingConnectionsUsed] = newCon;
          incomingConnectionsBuffer[incomingConnectionsUsed] = malloc(BUFSIZE);
          if(!incomingConnectionsBuffer[incomingConnectionsUsed]) {
            fprintf(stderr, "[%d] Malloc failed: %s\n", LOCATION, strerror(errno));
            close(newCon);
          } else {
            ++incomingConnectionsUsed;
          }
        }
      }
    }

    if(FD_ISSET(currentlyConnecting, &writeSet)) {
      int r, err;
      socklen_t errLen;
      errLen = sizeof(int);
      
      r = getsockopt(currentlyConnecting, SOL_SOCKET, SO_ERROR, &err, &errLen);
      if(r < 0) {
        fprintf(stderr, "[%d] getsockopt failed: %s\n", LOCATION, strerror(errno));
        return 1;
      }
      if(err < 0) {
        fprintf(stderr, "[%d] Connection failed: %s\n", LOCATION, strerror(err));
        return 1;
      }

      neighbourConnections[currentlyConnectingIndex] = currentlyConnecting;
      currentlyConnecting = -1;

      fprintf(stdout, "[%d] Successfully connected location %d...\n", LOCATION, currentlyConnectingIndex);
      fflush(stdout);
    }
  }

  return 0;
}

int createIncomingSocket() {
  int gsm, b, l;
  socklen_t incomingAddrLen;

  incomingSocket = socket(AF_INET, SOCK_STREAM, 0);
  if(incomingSocket < 0) {
    fprintf(stderr, "[%d] Cannot create incoming socket: %s\n", LOCATION, strerror(errno));
    return 1;
  }

  incomingAddr.sin_family = AF_INET;
  incomingAddr.sin_port = 0;
  incomingAddr.sin_addr.s_addr = INADDR_ANY;

  b = bind(incomingSocket, (struct sockaddr *)&incomingAddr, sizeof(incomingAddr));
  if(b < 0) {
    fprintf(stderr, "[%d] Cannot bind server socket: %s\n", LOCATION, strerror(errno));
    return 1;
  }
  
  l = listen(incomingSocket, 64);
  if(l < 0) {
    fprintf(stderr, "[%d] Cannot listen on server socket: %s\n", LOCATION, strerror(errno));
    return 1;
  }

  incomingAddrLen = sizeof(incomingAddr);
  gsm = getsockname(incomingSocket, (struct sockaddr *)&incomingAddr, &incomingAddrLen);
  if(gsm < 0) {
    fprintf(stderr, "[%d] Could not determine own address: %s\n", LOCATION, strerror(errno));
    return 1;
  }

  return 0;
}

void addToken(uint32_t place) {
  ++tokens[place];
  /*
  fprintf(stdout, "Placed a token on %d\n", place);
  */
}

void sendToken(uint32_t place) {
  int loc = placeLocations[place];

  /*
  fprintf(stdout, "Sending a token on %d\n", place);
  */

  if(loc == LOCATION) {
    addToken(place);
  } else {
    int w;

    w = writeAll(neighbourConnections[loc], (char *)&place, sizeof(place));
    if(w) {
      fprintf(stderr, "[%d] Could not send token to %d: %s\n", LOCATION, loc, strerror(errno));
    }
  }
}

int main(int argc, char *argv[]) {
  int running = 1;
  int r;
  int exitOnInput;

  if(argc != 3) {
    fprintf(stderr, "usage: ./node <directory host:port> [no]exit\n");
    return 1;
  }

  exitOnInput = strcmp(argv[2], "noexit");

  r = createIncomingSocket();
  if(r) return r;
  r = determineNeighbourConnections(argv[1]);
  if(r) return r;
  r = populateNeighbourConnections(argv[1]);
  if(r) return r;

  fprintf(stdout, "[%d] Bootup finished. Ready to execute net.\n", LOCATION);
  fflush(stdout);

  while(running) {
    int i, maxFd;
    fd_set readSet;
    uint64_t n = now();
    int firing = 1;
    struct timeval timeout;
    
    if(!lastStatistics) lastStatistics = n;

    while(firing) {
      firing = 0;

      /* fprintf(stdout, "...\n"); */
      /* fflush(stdout); */
      
      if(fire()) {
        ++firings;
        ++total_firings;
        firing = 1;
      }

      if(n > lastStatistics + 1000000) {
        fprintf(stdout, "[%d] T: %ld; T/s: %10.6f.  F: %ld, lF: %ld, Q: %10.6f\n",
          LOCATION,
          (long int)firings, firings * 1000000.0 / (n - lastStatistics),
          (long int)total_firings, (long int)total_labelled_firings, 1.0 * total_firings / total_labelled_firings);
        fflush(stdout);

        lastStatistics = n;
        firings = 0;
      }

      if(total_firings % 10000 == 0) {
        break;
      }
    }

    FD_ZERO(&readSet);

    if(exitOnInput) {
      FD_SET(0, &readSet);
    }

    FD_SET(incomingSocket, &readSet);
    maxFd = incomingSocket;

    for(i = 0; i < incomingConnectionsUsed; ++i) {
      const int *const con = incomingConnections + i;

      FD_SET(*con, &readSet);
      if(*con > maxFd) maxFd = *con;
    }

    timeout.tv_sec = 1;
    timeout.tv_usec = 0;

    if(enabled()) {
      timeout.tv_sec = 0;
    }

    select(maxFd + 1, &readSet, NULL, NULL, &timeout);

    if(FD_ISSET(0, &readSet)) {
      printf("[%d] User input received, terminating location.\n", LOCATION);
      running = 0;
    }

    if(FD_ISSET(incomingSocket, &readSet)) {
      if(incomingConnectionsUsed >= LOCATION_COUNT) {
        fprintf(stderr, "[%d] Incoming connection array full.\n", LOCATION);
      } else {
        int newCon = accept(incomingSocket, NULL, NULL);

        if(newCon < 0) {
          fprintf(stderr, "[%d] Cannot accept incoming connection: %s\n", LOCATION, strerror(errno));
        } else {
          incomingConnections[incomingConnectionsUsed] = newCon;
          incomingConnectionsBuffer[incomingConnectionsUsed] = malloc(BUFSIZE);
          if(!incomingConnectionsBuffer[incomingConnectionsUsed]) {
            fprintf(stderr, "[%d] Malloc failed: %s\n", LOCATION, strerror(errno));
            close(newCon);
          } else {
            ++incomingConnectionsUsed;
          }
        }
      }
    }

    for(i = 0; i < incomingConnectionsUsed; ++i) {
      const int *const con = incomingConnections + i;

      if(FD_ISSET(*con, &readSet)) {
        int len = read(*con, incomingConnectionsBuffer[i] + incomingConnectionsBufferFill[i],
          BUFSIZE - incomingConnectionsBufferFill[i]);
        if(len == 0) {
          fprintf(stderr, "[%d] Connection terminated.\n", LOCATION);
          running = 0;
        } else if(len < 0) {
          fprintf(stderr, "[%d] Could not read incoming data: %s\n", LOCATION, strerror(errno));
        } else {
          int j;

          incomingConnectionsBufferFill[i] += len;
          for(j = 0; j < incomingConnectionsBufferFill[i] - 3; j += 4) {
            uint32_t place = *(uint32_t *)(incomingConnectionsBuffer[i] + j);
            /*
            fprintf(stdout, "Received a token on %d\n", place);
            */
            addToken(place);
          }

          incomingConnectionsBufferFill[i] = incomingConnectionsBufferFill[i] % 4;
          memmove(incomingConnectionsBuffer[i], incomingConnectionsBuffer[i] + j,
            incomingConnectionsBufferFill[i]);
        }
      }
    }
  }

  printf("[%d] Finished.\n", LOCATION);

  return 0;
}

/* vim: set syn=c: */







compiler/node.h

#ifndef NODE_H
#define NODE_H

#include <netinet/in.h>

void sendToken(uint32_t place);

uint64_t total_firings = 0;
uint64_t total_labelled_firings = 0;

#endif







compiler/producer-consumer.pnml
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compiler/tikzplot.pl

#!/usr/bin/perl

use strict;
use warnings;
use Data::Dumper;

my $file = $ARGV[0];
unless($file) {
  die "usage: ./tikzplot.pl <input.log> [--max <max>]"
}

my $output = $file;
$output =~ s/\.log/\.tikz/;


open INPUT, '<', $file or die "cannot open $file: $!";
open OUTPUT, '>', $output or die "cannot open $output: $!";

my $data = {};
my $avg = {};
my $counts_total = {};
my $counts_labelled = {};

my $min = 999999999;
my $max = 0;

my $rampup = 10;

while(my $line = <INPUT>) {
  next unless $line =~ m!^\[(\d+)\] +T: +(\d+); +T/s: +(\d+\.\d+). +F: +(\d+), +lF: +(\d+), +Q: +(\d+\.\d|inf|-?nan)+!;
  --$rampup if($1 == 0);
  next unless $rampup < 0;

  push @{$data->{$1}}, int($2);
  # system gets more into equilibrium towards the end, this is not
  # really average, but a good measure of long-term firing frequency
  $avg->{$1} = defined $avg->{$1}? 0.9 * $avg->{$1} + 0.1 * int($2): int($2);
  $max = $2 if($2 > $max);
  $min = $2 if($2 < $min);

  $counts_total->{$1} = $4;
  $counts_labelled->{$1} = $5;
}
close INPUT;

if($ARGV[1] and $ARGV[1] eq '--max') {
  $max = $ARGV[2];
}

my $scale = 1;
while($max / $scale > 10) {
  $scale *= 5;
  if($max / $scale > 10) {
    $scale *= 2;
  }
}

if($ARGV[3] and $ARGV[3] eq '--scale') {
  $scale = $ARGV[4];
}

my $yscale = 3;
if(keys %{$data} > 10) {
  $yscale = 10;
}

my $count_total = 0;
$count_total += $_ foreach values %$counts_total;

my $count_labelled = 0;
$count_labelled += $_ foreach values %$counts_labelled;

if (not $count_labelled) {
  print "Does not look like a useful log file.\n";
  exit 0;
}

my $factor = $count_total / $count_labelled;

my $per_sec = 0;
$per_sec += $_ foreach values %$avg;

print "$file:\nScale: $scale, Firings: $count_total ($per_sec/s), thereof labelled: $count_labelled, Factor: $factor\n";

foreach my $l (sort keys %{$data}) {
  my ($min, $q1, $median, $q3, $max) = statistics($data->{$l});
  $min /= $scale;
  $q1 /= $scale;
  $median /= $scale;
  $q3 /= $scale;
  $max /= $scale;
  my ($bot, $med, $top) = ($l, $l + 0.4, $l + 0.8);
  $bot /= $yscale;
  $med /= $yscale;
  $top /= $yscale;
  $bot += 0.2;
  $med += 0.2;
  $top += 0.2;

  print OUTPUT <<EOTEX
\\draw ($q1,$bot) rectangle ($q3,$top) ;
\\draw ($min,$bot) -- ($min,$top) ;
\\draw ($min,$med) -- ($q1,$med) ;
\\draw ($median,$bot) -- ($median,$top) ;
\\draw ($q3,$med) -- ($max,$med) ;
\\draw ($max,$bot) -- ($max,$top) ;
EOTEX
}

my @xCoords;
for(my $i = 0; $i < $max * 1.2; $i += $scale) {
  push @xCoords, $i;
}

my $log = 1;
while(10 ** ($log+1) < $scale) {
  $log++;
}
my $labelScale = 10 ** $log;

my $xCoords = join ',', map { $_ / $scale . '/' . $_ / $labelScale } @xCoords;

my $xAxisEnd = $max * 1.3 / $scale;
my $xAxisLabel = $xAxisEnd + 0.7;

print OUTPUT <<EOTEX;
\\draw [->] (0, 0) -- ($xAxisEnd, 0) ;
\\foreach \\x/\\xtext in {$xCoords}
  \\draw (\\x, 0.1) -- (\\x,-0.1) node[anchor=north,fill=white] {\$\\xtext\$} ;
\\draw ($xAxisLabel,0.2) node[anchor=north,fill=white] {\$10^$log T/s\$} ;
EOTEX
close OUTPUT;

sub statistics {
  my ($data) = @_;

  my @sorted = sort { $a <=> $b } @$data;

  my $min = $sorted[0];
  my $q1 = $sorted[int(@sorted * 0.25)];
  my $median = $sorted[int(@sorted * 0.5)];
  my $q3 = $sorted[int(@sorted * 0.75)];
  my $max = $sorted[$#sorted];

  return ($min, $q1, $median, $q3, $max);
}







compiler/distribute-conflictrepl.pl

#!/usr/bin/perl

use strict;
use warnings;
use utf8;

use XML::Simple;
use Data::Dumper;
use Digest::SHA qw(sha256_hex);

unless(@ARGV == 3) {
  die "Usage: distribute-diverging.pl <input.pnml> <output.pnml> <output.code>";
}

my ($input, $output, $outputCode) = @ARGV;

my $xml = XMLin($input, ForceArray => ['place', 'transition', 'arc', 'text'], KeyAttr => [], KeepRoot => 1);
my $page = $xml->{'pnml'}->{'net'}->{'page'};

my %places = map {
  ($_->{'id'} => {
    'type' => 'place',
    'id' => $_->{'id'},
    'initial' => $_->{'initialMarking'}->{'text'}->[0],
    'pre' => [],
    'post' => [],
    'x' => $_->{'graphics'}->{'position'}->{'x'},
    'y' => $_->{'graphics'}->{'position'}->{'y'},
  })
}  @{$page->{'place'}};
my %transitions = map {
  ($_->{'id'} => {
    'type' => 'transition',
    'id' => $_->{'id'},
    'pre' => [],
    'post' => [],
    'label' => $_->{'name'}->{'text'}->[0],
    'x' => $_->{'graphics'}->{'position'}->{'x'},
    'y' => $_->{'graphics'}->{'position'}->{'y'},
  })
}  @{$page->{'transition'}};

my $idx = 0;
foreach my $p (sort keys %places) {
  $places{$p}->{'idx'} = $idx++;
}
$idx = 0;
foreach my $t (sort keys %transitions) {
  $transitions{$t}->{'idx'} = $idx++;
}

foreach my $arc (@{$page->{'arc'}}) {
  if(exists $places{$arc->{'source'}}) {
    push @{$places{$arc->{'source'}}->{'post'}}, $transitions{$arc->{'target'}};
    push @{$transitions{$arc->{'target'}}->{'pre'}}, $places{$arc->{'source'}};
  } elsif(exists $transitions{$arc->{'source'}}) {
    push @{$transitions{$arc->{'source'}}->{'post'}}, $places{$arc->{'target'}};
    push @{$places{$arc->{'target'}}->{'pre'}}, $transitions{$arc->{'source'}};
  } else {
    die "Arc source node does not exist: " . $arc->{'source'};
  }
}

my $scale = 10;

sub conflictingTransitions {
  my ($t) = @_;

  my %result;

  foreach my $p (@{$t->{'pre'}}) {
    foreach my $u (@{$p->{'post'}}) {
      $result{$u->{'id'}} = 1;
    }
  }

  return map { $transitions{$_} } keys %result;
}

my @finalNewPlaces;
my @finalNewTransitions;
my @finalNewArcs;

my $minX = 9999999;
my $minY = 9999999;

foreach my $j (values %transitions) {
  $minX = $j->{'x'} if($j->{'x'} < $minX);
  $minY = $j->{'y'} if($j->{'y'} < $minY);
}

# \forall j \in T'\\
foreach my $j (values %transitions) {
  my @newPlaces;
  my @newTransitions;
  my @newArcs;

  # \ul(5,20):initialisejfire:$\tau$:$\ini\cdot\fire$;
  push @newTransitions, {
    'id' => 'initialise-' . $j->{'id'} . '-fire',
    'x' => 5, 'y' => 20,
  };

  # \Ql(7,26):readyinitialisej:$\pi_j$;
  push @newPlaces, {
    'id' => 'initialise-' . $j->{'id'} . '-ready',
    'x' => 7, 'y' => 26,
    'initial' => 1,
  };

  # \forall p \in \precond{j}\\
  foreach my $p (@{$j->{'pre'}}) {
    # \ql(5,26):p:$p$;
    push @newPlaces, {
      'id' => $p->{'id'},
      'initial' => $p->{'initial'},
      'x' => 5, 'y' => 26,
    };
  
    # \ul(5,24):distributep:$\tau$:$\dist$;
    push @newTransitions, {
      'id' => 'distribute-' . $p->{'id'},
      'x' => 5, 'y' => 24,
    };

    # \ql(5,22):pj:$p_j$;
    push @newPlaces, {
      'id' => $p->{'id'} . '-' . $j->{'id'},
      'x' => 5, 'y' => 22,
    };

    # \qbs(7,20.2):initialisejfired:$\Fired(\ini)$;
    push @newPlaces, {
      'id' => 'initialise-' . $j->{'id'} . '-fired',
      'x' => 7, 'y' => 20.2,
    };

    # \ul(17,20.2):initialisejundone:$\tau$:$\ini\cdot\undone$;
    push @newTransitions, {
      'id' => 'initialise-' . $j->{'id'} . '-undone',
      'x' => 17, 'y' => 20.2,
    };

    # \qr(17,23):initialisejrho:$\rho(\ini)$;
    push @newPlaces, {
      'id' => 'initialise-' . $j->{'id'} . '-rho',
      'x' => 17, 'y' => 23,
    };

    # \a p->distributep;
    push @newArcs, {
      'from' => $p->{'id'},
      'to' => 'distribute-' . $p->{'id'},
    };

    # \a distributep->pj;
    push @newArcs, {
      'from' => 'distribute-' . $p->{'id'},
      'to' => $p->{'id'} . '-' . $j->{'id'},
    };

    # \forall h <^\# j\\
    foreach my $h (grep { $_->{'id'} lt $j->{'id'} } conflictingTransitions($j)) {
      # \ql(11,19):initialisejtaketrans:$\take(\transin{j}, \ini)$;
      push @newPlaces, {
        'id' => 'initialise-' . $j->{'id'} . '-taketrans-' . $h->{'id'},
        'x' => 11, 'y' => 19,
      };
      # \uts(13,19):initialisejundotrans:$\tau$:$\ini\cdot\undo[](\transin{j})$;
      push @newTransitions, {
        'id' => 'initialise-' . $j->{'id'} . '-undotrans-' . $h->{'id'},
        'x' => 13, 'y' => 19,
      };
      # \qr(14.93,19):initialisejtooktrans:$\took(\transin{j}, \ini)$;
      push @newPlaces, {
        'id' => 'initialise-' . $j->{'id'} . '-tooktrans-' . $h->{'id'},
        'x' => 14.93, 'y' => 19,
      };

      # \ql(5,18.65):transin:$\transin{j}$;
      push @newPlaces, {
        'id' => 'trans-' . $j->{'id'} . '-in-' . $h->{'id'},
        'x' => 5, 'y' => 18.65,
      };

      # \Qr(5.5,17.5):pconh:$\pi_{h\#j}$;
      push @newPlaces, {
        'id' => 'con-' . $j->{'id'} . '-' . $h->{'id'},
        'x' => 5.5, 'y' => 17.5,
        'initial' => 1,
      };

      # \ul(5,15.2):transjfire:$\tau$:$\trans{j}\cdot\fire$;
      push @newTransitions, {
        'id' => 'trans-' . $j->{'id'} . '-' . $h->{'id'},
        'x' => 5, 'y' => 15.2,
      };

      # \qts(7,15.2):transjfired:$\Fired(\trans{j})$;
      push @newPlaces, {
        'id' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-fired',
        'x' => 7, 'y' => 15.2,
      };
      
      # \ql(10.5,14.5):transjtaketrans:$\take(\transout{j}, \trans{j})$;
      push @newPlaces, {
        'id' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-take',
        'x' => 10.5, 'y' => 14.5,
      };

      # \ubs(13,14):transjundotrans:$\tau$:$\trans{j}\cdot\undo[](\transout{j})$;
      push @newTransitions, {
        'id' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undo',
        'x' => 13, 'y' => 14,
      };

      # \qr(14.93,14):transjtooktrans:$\took(\transout{j}, \trans{j})$;
      push @newPlaces, {
        'id' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-took',
        'x' => 14.93, 'y' => 14,
      };

      # \ul(17,15.2):transjundone:$\tau$:$\trans{j}\cdot\undone$;
      push @newTransitions, {
        'id' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undone',
        'x' => 17, 'y' => 15.2,
      };

      # \qr(17,16.5):transjrho:$\rho(\trans{j})$;
      push @newPlaces, {
        'id' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-rho',
        'x' => 17, 'y' => 16.5,
      };

      # \ql(5,14):transout:$\transout{j}$;
      push @newPlaces, {
        'id' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-out',
        'x' => 5, 'y' => 14,
      };

      # \a initialisejfire->transin;
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-fire',
        'to' => 'trans-' . $j->{'id'} . '-in-' . $h->{'id'},
      };
      
      # \draw[flow] (transin) -- (6.5,18.65) -- (initialisejundotrans);
      push @newArcs, {
        'from' => 'trans-' . $j->{'id'} . '-in-' . $h->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-undotrans-' . $h->{'id'},
      };
    
      # \a initialisejtaketrans->initialisejundotrans;
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-taketrans-' . $h->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-undotrans-' . $h->{'id'},
      };
      
      # \a initialisejundotrans->initialisejtooktrans;
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-undotrans-' . $h->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-tooktrans-' . $h->{'id'},
      };
      
      # \a initialisejtooktrans->initialisejundone;
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-tooktrans-' . $h->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-undone',
      };
    
      # \a transin->transjfire;
      push @newArcs, {
        'from' => 'trans-' . $j->{'id'} . '-in-' . $h->{'id'},
        'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'},
      };
      
      # \draw[flow] (transjundone) -- (13.8,18.4) -- (7,18.4) -- (transin);
      push @newArcs, {
        'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undone',
        'to' => 'trans-' . $j->{'id'} . '-in-' . $h->{'id'},
      };
      
      # \a pconh->transjfire;
      push @newArcs, {
        'from' => 'con-' . $j->{'id'} . '-' . $h->{'id'},
        'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'},
      };
      
      # \a transjfire->transout;
      push @newArcs, {
        'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'},
        'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-out',
      };
      
      # \a transout->transjundotrans;
      push @newArcs, {
        'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-out',
        'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undo',
      };
      
      # \a transjfire->transjfired;
      push @newArcs, {
        'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'},
        'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-fired',
      };
      
      # \a transjtaketrans->transjundotrans;
      push @newArcs, {
        'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-take',
        'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undo',
      };
      
      # \a transjundotrans->transjtooktrans;
      push @newArcs, {
        'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undo',
        'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-took',
      };
      
      # \a transjtooktrans->transjundone;
      push @newArcs, {
        'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-took',
        'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undone',
      };
      
      # \a transjundone->transjrho;
      push @newArcs, {
        'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undone',
        'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-rho',
      };
      
      # \forall u \confeq j\\
      foreach my $u (conflictingTransitions($j)) {
        # \ur(8.9,15.2):transjundo:$\tau$:$\trans{j}\cdot\undo[u]$;
        push @newTransitions, {
          'id' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undo-' . $u->{'id'},
          'x' => 8.9, 'y' => 15.2,
        };

        # \ur(16,17.5):transjreset:$\tau$:$\trans{j}\cdot\reset[u]$;
        push @newTransitions, {
          'id' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-reset-' . $u->{'id'},
          'x' => 16, 'y' => 17.5,
        };

        # \ur(10.5,17):transjelide:$\tau$:$\trans{j}\cdot\elide[u]$;
        push @newTransitions, {
          'id' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-elide-' . $u->{'id'},
          'x' => 10.5, 'y' => 17,
        };

        # \qr(13.5,15.8):transjrhou:$\rho_u(\trans{j})$;
        push @newPlaces, {
          'id' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-rho-' . $u->{'id'},
          'x' => 13.5, 'y' => 15.8,
        };

        # \ql(8.9,17):undotransj:$\undo[u](\trans{j})$;
        push @newPlaces, {
          'id' => 'P-trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undo-' . $u->{'id'},
          'x' => 8.9, 'y' => 17,
        };

        # \ql(12,17.75):resettransj:$\reset[u](\trans{j})$;
        push @newPlaces, {
          'id' => 'P-trans-' . $j->{'id'} . '-' . $h->{'id'} . '-reset-' . $u->{'id'},
          'x' => 12, 'y' => 17.75,
        };

        # \ql(12,16.25):acktransj:$\ack[u](\trans{j})$;
        push @newPlaces, {
          'id' => 'P-trans-' . $j->{'id'} . '-' . $h->{'id'} . '-ack-' . $u->{'id'},
          'x' => 12, 'y' => 16.25,
        };

        # \a initialisejundo->initialisejtaketrans;
        push @newArcs, {
          'from' => 'initialise-' . $j->{'id'} . '-undo-' . $u->{'id'},
          'to' => 'initialise-' . $j->{'id'} . '-taketrans-' . $h->{'id'},
        };

        # \draw[flow] (transjreset) -- (15.25,18.25) -- (7,18.25) -- (pconh);
        push @newArcs, {
          'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-reset-' . $u->{'id'},
          'to' => 'con-' . $j->{'id'} . '-' . $h->{'id'},
        };
        
        # \a undotransj->transjundo;
        push @newArcs, {
          'from' => 'P-trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undo-' . $u->{'id'},
          'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undo-' . $u->{'id'},
        };
        
        # \a undotransj->transjelide;
        push @newArcs, {
          'from' => 'P-trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undo-' . $u->{'id'},
          'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-elide-' . $u->{'id'},
        };
        
        # \a resettransj->transjelide;
        push @newArcs, {
          'from' => 'P-trans-' . $j->{'id'} . '-' . $h->{'id'} . '-reset-' . $u->{'id'},
          'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-elide-' . $u->{'id'},
        };
        
        # \a resettransj->transjreset;
        push @newArcs, {
          'from' => 'P-trans-' . $j->{'id'} . '-' . $h->{'id'} . '-reset-' . $u->{'id'},
          'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-reset-' . $u->{'id'},
        };
        
        # \a transjelide->acktransj;
        push @newArcs, {
          'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-elide-' . $u->{'id'},
          'to' => 'P-trans-' . $j->{'id'} . '-' . $h->{'id'} . '-ack-' . $u->{'id'},
        };
        
        # \a transjreset->acktransj;
        push @newArcs, {
          'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-reset-' . $u->{'id'},
          'to' => 'P-trans-' . $j->{'id'} . '-' . $h->{'id'} . '-ack-' . $u->{'id'},
        };

        # \a transjfired->transjundo;
        push @newArcs, {
          'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-fired',
          'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undo-' . $u->{'id'},
        };
        
        # \a transjundo->transjtaketrans;
        push @newArcs, {
          'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undo-' . $u->{'id'},
          'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-take',
        };
        
        # \a transjrho->transjreset;
        push @newArcs, {
          'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-rho',
          'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-reset-' . $u->{'id'},
        };
        
        # \draw[flow] (transjundo) -- (10.5,15.8) -- (transjrhou);
        push @newArcs, {
          'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-undo-' . $u->{'id'},
          'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-rho-' . $u->{'id'},
        };
        
        # \a transjrhou->transjreset;
        push @newArcs, {
          'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-rho-' . $u->{'id'},
          'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-reset-' . $u->{'id'},
        };
      }

      # \forall i \leq^\# j\\
      foreach my $i (grep { $_->{'id'} le $j->{'id'} } conflictingTransitions($j)) {
        # \A transout->executehj;
        push @newArcs, {
          'from' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-out',
          'to' => 'execute-' . $j->{'id'} . '-' . $i->{'id'},
        };
        
        # \A executehj->transout;
        push @newArcs, {
          'from' => 'execute-' . $j->{'id'} . '-' . $i->{'id'},
          'to' => 'trans-' . $j->{'id'} . '-' . $h->{'id'} . '-out',
        };
      }
    }

    # \forall i \leq^\# j\\
    foreach my $i (grep { $_->{'id'} le $j->{'id'} } conflictingTransitions($j)) {
      # \ql(3,13):prehj:$\Pre^i_j$;
      push @newPlaces, {
        'id' => 'pre-' . $j->{'id'} . '-' . $i->{'id'},
        'x' => 3, 'y' => 13,
      };

      # \ul(5,12):executehj:\makebox[0pt]{$\ell(i)$}:;
      push @newTransitions, {
        'id' => 'execute-' . $j->{'id'} . '-' . $i->{'id'},
        'x' => 5, 'y' => 12,
        'label' => $j->{'label'},
      };

      # \ul(5,5.5):fetchedhj:$\tau$:$\fetched{j}$;
      push @newTransitions, {
        'id' => 'fetched-' . $j->{'id'} . '-' . $i->{'id'},
        'x' => 5, 'y' => 5.5,
      };

      # \ul(5,2.5):completehj:$\tau$:$\comp{j}$;
      push @newTransitions, {
        'id' => 'completed-' . $j->{'id'} . '-' . $i->{'id'},
        'x' => 5, 'y' => 2.5,
      };

      # \B prehj->executehj;
      push @newArcs, {
        'from' => 'pre-' . $j->{'id'} . '-' . $i->{'id'},
        'to' => 'execute-' . $j->{'id'} . '-' . $i->{'id'},
      };
      
      # \B executehj->prehj;
      push @newArcs, {
        'from' => 'execute-' . $j->{'id'} . '-' . $i->{'id'},
        'to' => 'pre-' . $j->{'id'} . '-' . $i->{'id'},
      };
      
      # \forall q \in \precond{i}\\
      foreach my $q (@{$i->{'pre'}}) {
        # \forall c \in \postcond{q}\\
        foreach my $c (@{$q->{'post'}}) {
          # \ql(5,10):fetchphjin:$\fetchin[q,c]$;
          push @newPlaces, {
            'id' => 'fetch-' . $j->{'id'} . '-in-' . $i->{'id'} . '-' . $q->{'id'} . '-' . $c->{'id'},
            'x' => 5, 'y' => 10,
          };

          # \ur(5,8.5):fetchphj:$\tau$:$\fetch[q,c]$;
          push @newTransitions, {
            'id' => 'fetch-' . $j->{'id'} . '-' . $i->{'id'} . '-' . $q->{'id'} . '-' . $c->{'id'},
            'x' => 5, 'y' => 8.5,
          };

          # \ql(5,7):fetchphjout:$\fetchout[q,c]$;
          push @newPlaces, {
            'id' => 'fetch-' . $j->{'id'} . '-out-' . $i->{'id'} . '-' . $q->{'id'} . '-' . $c->{'id'},
            'x' => 5, 'y' => 7,
          };

          # \ql(3,8.5):pbackbottom:$q_c$;
          push @newPlaces, {
            'id' => $q->{'id'} . '-' . $c->{'id'},
            'x' => 3, 'y' => 8.5,
          };

          # \a executehj->fetchphjin;
          push @newArcs, {
            'from' => 'execute-' . $j->{'id'} . '-' . $i->{'id'},
            'to' => 'fetch-' . $j->{'id'} . '-in-' . $i->{'id'} . '-' . $q->{'id'} . '-' . $c->{'id'},
          };
          
          # \a fetchphjin->fetchphj;
          push @newArcs, {
            'from' => 'fetch-' . $j->{'id'} . '-in-' . $i->{'id'} . '-' . $q->{'id'} . '-' . $c->{'id'},
            'to' => 'fetch-' . $j->{'id'} . '-' . $i->{'id'} . '-' . $q->{'id'} . '-' . $c->{'id'},
          };
          
          # \a pbackbottom->fetchphj;
          push @newArcs, {
            'from' => $q->{'id'} . '-' . $c->{'id'},
            'to' => 'fetch-' . $j->{'id'} . '-' . $i->{'id'} . '-' . $q->{'id'} . '-' . $c->{'id'},
          };
          
          # \a fetchphj->fetchphjout;
          push @newArcs, {
            'from' => 'fetch-' . $j->{'id'} . '-' . $i->{'id'} . '-' . $q->{'id'} . '-' . $c->{'id'},
            'to' => 'fetch-' . $j->{'id'} . '-out-' . $i->{'id'} . '-' . $q->{'id'} . '-' . $c->{'id'},
          };
          
          # \a fetchphjout->fetchedhj;
          push @newArcs, {
            'from' => 'fetch-' . $j->{'id'} . '-out-' . $i->{'id'} . '-' . $q->{'id'} . '-' . $c->{'id'},
            'to' => 'fetched-' . $j->{'id'} . '-' . $i->{'id'},
          };

          # \forall r \in \postcond{i\,}\\
          foreach my $r (@{$i->{'post'}}) {
            # \ql(5,1):r:$r$;
            push @newPlaces, {
              'id' => $r->{'id'},
              'initial' => $r->{'initial'},
              'x' => 5, 'y' => 1,
            };

            # \a completehj->r;
            push @newArcs, {
              'from' => 'completed-' . $j->{'id'} . '-' . $i->{'id'},
              'to' => $r->{'id'},
            };

            # \forall t \in \UIij := \begin{array}[t]{@{}l@{}}
            my @UIij;
            # \{\ini[c]\mid c\confeq i\} +\mbox{}\\
            foreach my $c (conflictingTransitions($i)) {
              push @UIij, "initialise-$c->{'id'}";
            }
            # \{\trans[b]{c} \mid b <^\# c \confeq i\}
            foreach my $c (conflictingTransitions($i)) {
              foreach my $b (grep { $_->{'id'} lt $c->{'id'} } conflictingTransitions($c)) {
                push @UIij, "trans-$c->{'id'}-$b->{'id'}";
              }
            }

            # \forall t \in \UIij := \begin{array}[t]{@{}l@{}}
            foreach my $t (map { { 'id' => $_ } } @UIij) {
              # \qb(1,10):undohjt:$\undo(t)$;
              push @newPlaces, {
                'id' => 'P-' . $t->{'id'} . '-undo-' . $i->{'id'},
                'x' => 1, 'y' => 10,
              };

              # \qr(7,4):ackhjt:$\ack(t)$;
              push @newPlaces, {
                'id' => 'P-' . $t->{'id'} . '-ack-' . $i->{'id'},
                'x' => 7, 'y' => 4,
              };

              # \ql(3,4):resethjt:$\reset(t)$;
              push @newPlaces, {
                'id' => 'P-' . $t->{'id'} . '-reset-' . $i->{'id'},
                'x' => 3, 'y' => 4,
              };

              # \a executehj->undohjt;
              push @newArcs, {
                'from' => 'execute-' . $j->{'id'} . '-' . $i->{'id'},
                'to' => 'P-' . $t->{'id'} . '-undo-' . $i->{'id'},
              };

              # \a fetchedhj->resethjt;
              push @newArcs, {
                'from' => 'fetched-' . $j->{'id'} . '-' . $i->{'id'},
                'to' => 'P-' . $t->{'id'} . '-reset-' . $i->{'id'},
              };
              
              # \a ackhjt->completehj;
              push @newArcs, {
                'from' => 'P-' . $t->{'id'} . '-ack-' . $i->{'id'},
                'to' => 'completed-' . $j->{'id'} . '-' . $i->{'id'},
              };
            }
          }
        }
      }
    }

    # \forall k \geq^\# j\\
    foreach my $k (grep { $_->{'id'} ge $j->{'id'} } conflictingTransitions($j)) {
      # \ql(11,21.4):initialisejtakepre:$\take(\Pre^j_k, \ini)$;
      push @newPlaces, {
        'id' => 'initialise-' . $j->{'id'} . '-takepre-' . $k->{'id'},
        'x' => 11, 'y' => 21.4,
      };

      # \ubs(13,21.4):initialisejundopre:$\tau$:$\ini\cdot\undo[](\Pre^j_k)$;
      push @newTransitions, {
        'id' => 'initialise-' . $j->{'id'} . '-undopre-' . $k->{'id'},
        'x' => 13, 'y' => 21.4,
      };

      # \qr(14.93,21.4):initialisejtookpre:$\took(\Pre^j_k, \ini)$;
      push @newPlaces, {
        'id' => 'initialise-' . $j->{'id'} . '-tookpre-' . $k->{'id'},
        'x' => 14.93, 'y' => 21.4,
      };

      # \ql(6.8,21.75):prejk:$\Pre^j_k\!$;
      push @newPlaces, {
        'id' => 'pre-' . $j->{'id'} . '-' . $k->{'id'},
        'x' => 6.8, 'y' => 21.75,
      };

      # \a initialisejfire->prejk;
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-fire',
        'to' => 'pre-' . $j->{'id'} . '-' . $k->{'id'},
      };

      # \a initialisejtakepre->initialisejundopre;
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-takepre-' . $k->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-undopre-' . $k->{'id'},
      };
      
      # \a initialisejundopre->initialisejtookpre;
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-undopre-' . $k->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-tookpre-' . $k->{'id'},
      };
      
      # \a initialisejtookpre->initialisejundone;
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-tookpre-' . $k->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-undone',
      };
      
      # \forall u \confeq j\\
      foreach my $u (conflictingTransitions($j)) {
        # \draw[flow] (prejk) -- (7.5,21.75) -- (initialisejundopre);
        push @newArcs, {
          'from' => 'pre-' . $j->{'id'} . '-' . $k->{'id'},
          'to' => 'initialise-' . $j->{'id'} . '-undo-' . $u->{'id'},
        };

        # \a initialisejundo->initialisejtakepre;
        push @newArcs, {
          'from' => 'initialise-' . $j->{'id'} . '-undo-' . $u->{'id'},
          'to' => 'initialise-' . $j->{'id'} . '-takepre-' . $k->{'id'},
        };
      }
    }

    # \forall l >^\# j\\ # FIXME the paper seems broken here
    foreach my $l (grep { $_->{'id'} ge $j->{'id'} } conflictingTransitions($j)) {
      # \Qt(7,12):pconj:$\pi_{j\#l}$;
      push @newPlaces, {
        'id' => 'con-' . $l->{'id'} . '-' . $j->{'id'},
        'x' => 7, 'y' => 12,
        'initial'  => 1,
      };

      # \forall i \leq^\# j\\
      foreach my $i (grep { $_->{'id'} le $j->{'id'} } conflictingTransitions($j)) {
        # \a pconj->executehj;
        push @newArcs, {
          'from' => 'con-' . $l->{'id'} . '-' . $j->{'id'},
          'to' => 'execute-' . $j->{'id'} . '-' . $i->{'id'},
        };

        # \BB fetchedhj->pconj;
        push @newArcs, {
          'from' => 'fetched-' . $j->{'id'} . '-' . $i->{'id'},
          'to' => 'con-' . $l->{'id'} . '-' . $j->{'id'},
        };
      }
    }

    # \forall u \confeq j\\
    foreach my $u (conflictingTransitions($j)) {
      # \ur(8.9,20.2):initialisejundo:$\tau$:$\ini\cdot\undo[u]$;
      push @newTransitions, {
        'id' => 'initialise-' . $j->{'id'} . '-undo-' . $u->{'id'},
        'x' => 8.9, 'y' => 20.2,
      };

      # \ur(16,24.5):initialisejreset:$\tau$:$\ini\cdot\reset[u]$;
      push @newTransitions, {
        'id' => 'initialise-' . $j->{'id'} . '-reset-' . $u->{'id'},
        'x' => 16, 'y' => 24.5,
      };

      # \ur(10.5,24.5):initialisejelide:$\tau$:$\ini\cdot\elide[u]$;
      push @newTransitions, {
        'id' => 'initialise-' . $j->{'id'} . '-elide-' . $u->{'id'},
        'x' => 10.5, 'y' => 24.5,
      };

      # \qr(13.5,22.8):initialisejrhou:$\rho_u(\ini)$;
      push @newPlaces, {
        'id' => 'initialise-' . $j->{'id'} . '-rho-' . $u->{'id'},
        'x' => 13.5, 'y' => 22.8,
      };

      # \qx(8.9,24.5):undoinij:$\undo[u](\ini)$:(-0.55,0.5);
      push @newPlaces, {
        'id' => 'P-initialise-' . $j->{'id'} . '-undo-' . $u->{'id'},
        'x' => 8.9, 'y' => 24.5,
      };

      # \qr(12,25.5):resetinij:$\reset[u](\ini)$;
      push @newPlaces, {
        'id' => 'P-initialise-'. $j->{'id'} . '-reset-' . $u->{'id'},
        'x' => 12, 'y' => 25.5,
      };

      # \qx(12,23.5):ackinij:$\ack[u](\ini)$:(-0.65,-0.55);
      push @newPlaces, {
        'id' => 'P-initialise-' . $j->{'id'} . '-ack-' . $u->{'id'},
        'x' => 12, 'y' => '23.5',
      };

      # \a undoinij->initialisejundo;
      push @newArcs, {
        'from' => 'P-initialise-' . $j->{'id'} . '-undo-' . $u->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-undo-' . $u->{'id'},
      };
      
      # \a undoinij->initialisejelide;
      push @newArcs, {
        'from' => 'P-initialise-' . $j->{'id'} . '-undo-' . $u->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-elide-' . $u->{'id'},
      };
      
      # \a resetinij->initialisejelide;
      push @newArcs, {
        'from' => 'P-initialise-' . $j->{'id'} . '-reset-' . $u->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-elide-' . $u->{'id'},
      };
      
      # \a resetinij->initialisejreset;
      push @newArcs, {
        'from' => 'P-initialise-' . $j->{'id'} . '-reset-' . $u->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-reset-' . $u->{'id'},
      };
      
      # \a initialisejelide->ackinij;
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-elide-' . $u->{'id'},
        'to' => 'P-initialise-' . $j->{'id'} . '-ack-' . $u->{'id'},
      };
      
      # \a initialisejreset->ackinij;
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-reset-' . $u->{'id'},
        'to' => 'P-initialise-' . $j->{'id'} . '-ack-' . $u->{'id'},
      };

      # \a initialisejfired->initialisejundo;
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-fired',
        'to' => 'initialise-' . $j->{'id'} . '-undo-' . $u->{'id'},
      };

      # \a initialisejrho->initialisejreset;
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-rho',
        'to' => 'initialise-' . $j->{'id'} . '-reset-' . $u->{'id'},
      };
      
      # \draw[flow] (initialisejundo) -- (11.75,21.25) -- (11.75,22) -- (initialisejrhou);
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-undo-' . $u->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-rho-' . $u->{'id'},
      };
      
      # \a initialisejrhou->initialisejreset;
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-rho-' . $u->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-reset-' . $u->{'id'},
      };

      # \draw[flow] (initialisejreset) -- (15,26) -- (readyinitialisej);
      push @newArcs, {
        'from' => 'initialise-' . $j->{'id'} . '-reset-' . $u->{'id'},
        'to' => 'initialise-' . $j->{'id'} . '-ready',
      };
    }

    # Many of the following arcs could probably moved to outer loops, but it doesn't hurt.
    # \node[anchor=east,text=red](7.85,22.65){$F'(p,j)$};
    # \node[anchor=east,text=red](4.85,21.15){$F'(p,j)$};
    # \node[anchor=east,text=red](4.85,1.6){$F'(i,r)$};
    # \node[anchor=south,text=red](4,8.65){$F'(q,i)$};
    # \node[anchor=west](5.2,11.3){\large $\exec{j}$};
    #
    # \a pj->initialisejfire;
    push @newArcs, {
      'from' => $p->{'id'} . '-' . $j->{'id'},
      'to' => 'initialise-' . $j->{'id'} . '-fire',
    };
    
    # \draw[flow] (initialisejundone) -- (15,22.3) -- (6,22.3) -- (pj);
    push @newArcs, {
      'from' => 'initialise-' . $j->{'id'} . '-undone',
      'to' => $p->{'id'} . '-' . $j->{'id'},
    };
    
    # \a readyinitialisej->initialisejfire;
    push @newArcs, {
      'from' => 'initialise-' . $j->{'id'} . '-ready',
      'to' => 'initialise-' . $j->{'id'} . '-fire',
    };
    
    # \a initialisejfire->initialisejfired;
    push @newArcs, {
      'from' => 'initialise-' . $j->{'id'} . '-fire',
      'to' => 'initialise-' . $j->{'id'} . '-fired',
    };
    
    # \a initialisejundone->initialisejrho;
    push @newArcs, {
      'from' => 'initialise-' . $j->{'id'} . '-undone',
      'to' => 'initialise-' . $j->{'id'} . '-rho',
    };
  }

  foreach my $t (@newTransitions) {
    $t->{'x'} = ($j->{'x'} - $minX) * $scale + $t->{'x'} * 20;
    $t->{'y'} = ($j->{'y'} - $minY) * $scale + $t->{'y'} * 20;
    push @finalNewTransitions, $t;
  }

  foreach my $p (@newPlaces) {
    $p->{'x'} = ($j->{'x'} - $minX) * $scale + $p->{'x'} * 20;
    $p->{'y'} = ($j->{'y'} - $minY) * $scale + $p->{'y'} * 20;
    push @finalNewPlaces, $p;
  }

  foreach my $a (@newArcs) {
    push @finalNewArcs, $a;
  }
}

$page->{'place'} = [];
$page->{'transition'} = [];
$page->{'arc'} = [];

my %newPlaces = map { ($_->{'id'}, $_) } @finalNewPlaces;
my %newTransitions = map { ($_->{'id'}, $_) } @finalNewTransitions;
my %newArcs = map { ($_->{'from'} . '.to.' . $_->{'to'}, $_) } @finalNewArcs;

foreach my $p (values %newPlaces) {
  $p->{'initial'} = 0 unless exists $p->{'initial'};
  insertPlace($p);
}

insertTransition($_) foreach values %newTransitions;

foreach my $a (values %newArcs) {
  my $from = ($newPlaces{$a->{'from'}} or $newTransitions{$a->{'from'}});
  my $to = ($newPlaces{$a->{'to'}} or $newTransitions{$a->{'to'}});
  die "could not find element to connect from: $a->{'from'}" unless $from;
  die "could not find element to connect to $a->{'to'}" unless $to;

  connectElements($from, $to);
}

open OUTPUT, '>', $output or die "cannot open $output: $!";
print OUTPUT <<"EOO";
<?xml version="1.0" encoding="UTF-8"?>
<pnml xmlns="http://www.pnml.org/version-2009/grammar/pnml">
    <net id="$xml->{'pnml'}->{'net'}->{'id'}" type="http://www.pnml.org/version-2009/grammar/ptnet">
        <name>
            <text>$xml->{'pnml'}->{'net'}->{'name'}->{'text'}[0]</text>
        </name>
        <page id="$page->{'id'}">
            <name>
                <text>$page->{'name'}->{'text'}[0]</text>
            </name>
EOO

foreach my $p (@{$page->{'place'}}) {
  my $x = int($p->{'graphics'}->{'position'}->{'x'});
  my $y = int($p->{'graphics'}->{'position'}->{'y'});

  my $offX = $p->{'name'}->{'graphics'}->{'offset'}->{'x'};
  my $offY = $p->{'name'}->{'graphics'}->{'offset'}->{'y'};
  $offX = 30 unless defined $offX;
  $offY = 30 unless defined $offY;

  print OUTPUT <<"EOO";
            <place id="$p->{'id'}">
                <name>
                    <text>$p->{'name'}->{'text'}[0]</text>
                    <graphics>
                        <offset x="$offX" y="$offY"/>
                    </graphics>
                </name>
                <toolspecific tool="petrinet" version="1.0">
                    <placeCapacity capacity="999999999"/>
                </toolspecific>
                <graphics>
                    <position x="$x" y="$y"/>
                </graphics>
                <initialMarking>
                    <text>$p->{'initialMarking'}->{'text'}[0]</text>
                </initialMarking>
            </place>
EOO
}

foreach my $t (@{$page->{'transition'}}) {
  my $x = int($t->{'graphics'}->{'position'}->{'x'});
  my $y = int($t->{'graphics'}->{'position'}->{'y'});

  my $offX = $t->{'name'}->{'graphics'}->{'offset'}->{'x'};
  my $offY = $t->{'name'}->{'graphics'}->{'offset'}->{'y'};
  $offX = 30 unless defined $offX;
  $offY = 10 unless defined $offY;

  print OUTPUT <<"EOO";
            <transition id="$t->{'id'}">
                <name>
                    <text>$t->{'name'}->{'text'}[0]</text>
                    <graphics>
                        <offset x="$offX" y="$offY"/>
                    </graphics>
                </name>
                <toolspecific tool="petrinet" version="1.0">
                    <rotation degree="0"/>
                </toolspecific>
                <graphics>
                    <position x="$x" y="$y"/>
                </graphics>
            </transition>
EOO
}

foreach my $a (@{$page->{'arc'}}) {
  print OUTPUT <<"EOO";
            <arc id="$a->{'id'}" source="$a->{'source'}" target="$a->{'target'}">
                <inscription>
                    <text>$a->{'inscription'}->{'text'}[0]</text>
                </inscription>
            </arc>
EOO
}

print OUTPUT <<"EOO";
        </page>
    </net>
</pnml>
EOO
close OUTPUT;

open CODE, '>', $outputCode or die "cannot open $outputCode: $!";
foreach my $t (@{$page->{'transition'}}) {
  print CODE <<"EOC";
$t->{'name'}->{'text'}->[0]: (1) {
EOC
#   print CODE <<"EOC";
#   printf("Firing: $t->{'id'}\\n");
#   fflush(stdout);
# EOC
  if($t->{'id'} =~ /^execute-/) {
  print CODE <<"EOC";
  ++total_labelled_firings;
EOC
  }
  print CODE <<"EOC";
}
EOC
}
close CODE;

sub removePlace {
  my ($place) = @_;

  @{$page->{'place'}} = grep {
    $_->{'id'} ne $place->{'id'}
  } @{$page->{'place'}};

  @{$page->{'arc'}} = grep {
    $_->{'target'} ne $place->{'id'} and
    $_->{'source'} ne $place->{'id'}
  } @{$page->{'arc'}};
}

sub insertPlace {
  my ($place) = @_;

  push @{$page->{'place'}}, {
    'id' => $place->{'id'},
    'name' => {
      'text' => [$place->{'id'}],
    },
    'initialMarking' => {
      'text' => [$place->{'initial'}],
    },
    'graphics' => {
      'position' => {
        'x' => int($place->{'x'}),
        'y' => int($place->{'y'}),
      },
    },
  };

  foreach my $t (@{$place->{'pre'}}) {
    connectElements($t, $place);
  }

  foreach my $t (@{$place->{'post'}}) {
    connectElements($place, $t);
  }
}

sub insertTransition {
  my ($transition) = @_;

  push @{$page->{'transition'}}, {
    'id' => $transition->{'id'},
    'name' => {
      'text' => [$transition->{'label'} or $transition->{'id'}],
    },
    'graphics' => {
      'position' => {
        'x' => int($transition->{'x'}),
        'y' => int($transition->{'y'}),
      },
    },
  };

  foreach my $p (@{$transition->{'pre'}}) {
    connectElements($p, $transition);
  }

  foreach my $p (@{$transition->{'post'}}) {
    connectElements($transition, $p);
  }
}

sub connectElements {
  my ($s, $d) = @_;

  push @{$page->{'arc'}}, {
    'id' => $s->{'id'} . '.to.' . $d->{'id'},
    'source' => $s->{'id'},
    'target' => $d->{'id'},
    'inscription' => {
      'text' => ['1'],
    },
  };
}







compiler/distribute-diverging.pl

#!/usr/bin/perl

use strict;
use warnings;
use utf8;

use XML::Simple;
use Data::Dumper;
use Digest::SHA qw(sha256_hex);

unless(@ARGV == 2) {
  die "Usage: distribute-diverging.pl <input.pnml> <output.pnml>";
}

my ($input, $output) = @ARGV;

my $xml = XMLin($input, ForceArray => ['place', 'transition', 'arc', 'text'], KeyAttr => [], KeepRoot => 1);
my $page = $xml->{'pnml'}->{'net'}->{'page'};

my %places = map {
  ($_->{'id'} => {
    'type' => 'place',
    'id' => $_->{'id'},
    'initial' => $_->{'initialMarking'}->{'text'}->[0],
    'pre' => [],
    'post' => [],
    'x' => $_->{'graphics'}->{'position'}->{'x'},
    'y' => $_->{'graphics'}->{'position'}->{'y'},
  })
}  @{$page->{'place'}};
my %transitions = map {
  ($_->{'id'} => {
    'type' => 'transition',
    'id' => $_->{'id'},
    'pre' => [],
    'post' => [],
    'x' => $_->{'graphics'}->{'position'}->{'x'},
    'y' => $_->{'graphics'}->{'position'}->{'y'},
  })
}  @{$page->{'transition'}};

my $idx = 0;
foreach my $p (sort keys %places) {
  $places{$p}->{'idx'} = $idx++;
}
$idx = 0;
foreach my $t (sort keys %transitions) {
  $transitions{$t}->{'idx'} = $idx++;
}

foreach my $arc (@{$page->{'arc'}}) {
  if(exists $places{$arc->{'source'}}) {
    push @{$places{$arc->{'source'}}->{'post'}}, $transitions{$arc->{'target'}};
    push @{$transitions{$arc->{'target'}}->{'pre'}}, $places{$arc->{'source'}};
  } elsif(exists $transitions{$arc->{'source'}}) {
    push @{$transitions{$arc->{'source'}}->{'post'}}, $places{$arc->{'target'}};
    push @{$places{$arc->{'target'}}->{'pre'}}, $transitions{$arc->{'source'}};
  } else {
    die "Arc source node does not exist: " . $arc->{'source'};
  }
}

my $scale = 1.5;

foreach my $place (values %places) {
  next unless @{$place->{'post'}} > 1;

  removePlace($place);

  my @newPlaces = map { {
    'type' => 'place',
    'id' => $place->{'id'} . '-' . $_->{'id'},
    'pre' => [],
    'post' => [$_],
    'initial' => 0,
    'x' => $place->{'x'} * 0.7 + $_->{'x'} * 0.3,
    'y' => $place->{'y'} * 0.7 + $_->{'y'} * 0.3,
  } } @{$place->{'post'}};

  my @newTransitions = map { {
    'type' => 'transition',
    'id' => $place->{'id'} . '-' . $_->{'id'} . '-t',
    'pre' => [],
    'post' => [],
    'x' => $place->{'x'} * 0.7 + $_->{'x'} * 0.3 + 20,
    'y' => $place->{'y'} * 0.7 + $_->{'y'} * 0.3 + 20,
  } } @{$place->{'post'}};

  $newPlaces[0]->{'pre'} = $place->{'pre'};
  $newPlaces[0]->{'initial'} = $place->{'initial'};

  foreach my $p (@newPlaces) {
    insertPlace($p);
  }

  for(my $i = 0; $i < @newPlaces; ++$i) {
    my $a = $newPlaces[$i];
    my $b = $newPlaces[($i + 1) % @newPlaces];

    connectElements($a, $newTransitions[$i]);
    connectElements($newTransitions[$i], $b);

    my $dx = $b->{'x'} - $a->{'x'};
    my $dy = $b->{'y'} - $a->{'y'};

    $newTransitions[$i]->{'x'} = 0.5 * ($a->{'x'} + $b->{'x'}) + $dy * 0.3;
    $newTransitions[$i]->{'y'} = 0.5 * ($a->{'y'} + $b->{'y'}) + $dx * 0.3 + 10;
  }

  foreach my $t (@newTransitions) {
    insertTransition($t);
  }
}

open OUTPUT, '>', $output or die "cannot open $output: $!";
print OUTPUT <<"EOO";
<?xml version="1.0" encoding="UTF-8"?>
<pnml xmlns="http://www.pnml.org/version-2009/grammar/pnml">
    <net id="$xml->{'pnml'}->{'net'}->{'id'}" type="http://www.pnml.org/version-2009/grammar/ptnet">
        <name>
            <text>$xml->{'pnml'}->{'net'}->{'name'}->{'text'}[0]</text>
        </name>
        <page id="$page->{'id'}">
            <name>
                <text>$page->{'name'}->{'text'}[0]</text>
            </name>
EOO

foreach my $p (@{$page->{'place'}}) {
  my $x = int($scale * $p->{'graphics'}->{'position'}->{'x'});
  my $y = int($scale * $p->{'graphics'}->{'position'}->{'y'});

  my $offX = $p->{'name'}->{'graphics'}->{'offset'}->{'x'};
  my $offY = $p->{'name'}->{'graphics'}->{'offset'}->{'y'};
  $offX = 30 unless defined $offX;
  $offY = 30 unless defined $offY;

  print OUTPUT <<"EOO";
            <place id="$p->{'id'}">
                <name>
                    <text>$p->{'name'}->{'text'}[0]</text>
                    <graphics>
                        <offset x="$offX" y="$offY"/>
                    </graphics>
                </name>
                <toolspecific tool="petrinet" version="1.0">
                    <placeCapacity capacity="999999999"/>
                </toolspecific>
                <graphics>
                    <position x="$x" y="$y"/>
                </graphics>
                <initialMarking>
                    <text>$p->{'initialMarking'}->{'text'}[0]</text>
                </initialMarking>
            </place>
EOO
}

foreach my $t (@{$page->{'transition'}}) {
  my $x = int($scale * $t->{'graphics'}->{'position'}->{'x'});
  my $y = int($scale * $t->{'graphics'}->{'position'}->{'y'});

  my $offX = $t->{'name'}->{'graphics'}->{'offset'}->{'x'};
  my $offY = $t->{'name'}->{'graphics'}->{'offset'}->{'y'};
  $offX = 30 unless defined $offX;
  $offY = 10 unless defined $offY;

  print OUTPUT <<"EOO";
            <transition id="$t->{'id'}">
                <name>
                    <text>$t->{'name'}->{'text'}[0]</text>
                    <graphics>
                        <offset x="$offX" y="$offY"/>
                    </graphics>
                </name>
                <toolspecific tool="petrinet" version="1.0">
                    <rotation degree="0"/>
                </toolspecific>
                <graphics>
                    <position x="$x" y="$y"/>
                </graphics>
            </transition>
EOO
}

foreach my $a (@{$page->{'arc'}}) {
  print OUTPUT <<"EOO";
            <arc id="$a->{'id'}" source="$a->{'source'}" target="$a->{'target'}">
                <inscription>
                    <text>$a->{'inscription'}->{'text'}[0]</text>
                </inscription>
            </arc>
EOO
}

print OUTPUT <<"EOO";
        </page>
    </net>
</pnml>
EOO
close OUTPUT;

sub removePlace {
  my ($place) = @_;

  @{$page->{'place'}} = grep {
    $_->{'id'} ne $place->{'id'}
  } @{$page->{'place'}};

  @{$page->{'arc'}} = grep {
    $_->{'target'} ne $place->{'id'} and
    $_->{'source'} ne $place->{'id'}
  } @{$page->{'arc'}};
}

sub insertPlace {
  my ($place) = @_;

  push @{$page->{'place'}}, {
    'id' => $place->{'id'},
    'name' => {
      'text' => [$place->{'id'}],
    },
    'initialMarking' => {
      'text' => [$place->{'initial'}],
    },
    'graphics' => {
      'position' => {
        'x' => int($place->{'x'}),
        'y' => int($place->{'y'}),
      },
    },
  };

  foreach my $t (@{$place->{'pre'}}) {
    connectElements($t, $place);
  }

  foreach my $t (@{$place->{'post'}}) {
    connectElements($place, $t);
  }
}

sub insertTransition {
  my ($transition) = @_;

  push @{$page->{'transition'}}, {
    'id' => $transition->{'id'},
    'name' => {
      'text' => [$transition->{'id'}],
    },
    'graphics' => {
      'position' => {
        'x' => int($transition->{'x'}),
        'y' => int($transition->{'y'}),
      },
    },
  };

  foreach my $p (@{$transition->{'pre'}}) {
    connectElements($p, $transition);
  }

  foreach my $p (@{$transition->{'post'}}) {
    connectElements($transition, $p);
  }
}

sub connectElements {
  my ($s, $d) = @_;

  push @{$page->{'arc'}}, {
    'id' => $s->{'id'} . '.to.' . $d->{'id'},
    'source' => $s->{'id'},
    'target' => $d->{'id'},
    'inscription' => {
      'text' => ['1'],
    },
  };
}





compiler.zip
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and tool-specific annotations. While the standard contains many features ut-
terly irrelevant to the compiler project, they only add insignificant complexity
to the compiler. As free Petri net software – actually most academic projects –
suffers seriously from fragmentation 2 the added effort is certainly worth it.

Instead of repeating an ISO-standard, the simple example of the PNML-
file shown in Figure 7.1 will be discussed. Disregarding the XML-mandated
version and namespace declarations, the first relevant information comes line 2
where the3 net starts and is given an id. A net might in principle be layouted
across multiple pages, hence line 5, however this trivial example makes no use
of it. Upon the page places, transitions, and arcs maybe put. The first
two also have a name, places also an initialMarking. The various graphics
informations informs displaying software such as an editor where to put the
respective labels. Finally toolspecific annotations are also allowed, the editor
used to produce this example4 uses this facility to store place capacities (or –
in this case – the absence thereof). Finally arcs have a source and target

specifying where they connect and carry an inscription which is customarily
used to specify arc weight.

7.2 Architecture Overview

Converting such a PNML file to executable files is pretty straightforward: First
a distribution function is constructed by collecting transitions connected by
common preplaces. A C source file is then generated for each location. These
sources are then compiled via any C-compiler (gcc was used in all experiments
described later) to generate executables. Arcs incoming to a location are im-
plemented by each location opening a listening TCP/IP socket where tokens
can be deposited. Similarly, if a location has outgoing arcs, it connects to the
sockets of the destination and deposits tokens when appropriate. This approach
can implement arbitrary nets, however might generate only a single location if
the net can not be subdivided further.

In principle, TCP/IP port numbers could be generated for each location,
however that could easily lead to problems in deployment as unrelated services
might also attempt to use the same ports. Hence listening port numbers are
assigned by the operating system.

To ensure all locations still find each other, a central directory service is also
generated where each location registers during startup and queries for the IP
and port of all other locations it needs to know. This central directory service is
only used during startup and only for address lookup. It could be removed by
generating static addresses for all locations, however this would make network
deployment a bit more hasslesome. An alternative would be some discovery
protocol via broadcasts. As none of this has any impact on the distributed

2I really miss an efficient Petri net editor. It would certainly be worth the trouble, if it
had more than one user.

3always singular
4http://sourceforge.net/p/qtptneteditor/code/ci/master/tree/

http://sourceforge.net/p/qtptneteditor/code/ci/master/tree/
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<?xml version ="1.0" encoding ="UTF -8"?>

<pnml xmlns=" http :// www.pnml .org/version -2009/ grammar/pnml ">

<net id=" net0"

type =" http :// www.pnml .org/version -2009/ grammar /ptnet">

5 <name ><text >net0 </text ></name >

<page id=" page0">

<name ><text >net0 </text ></name >

<place id ="P0">

<name >

10 <text >P0 </text >

<graphics ><offset x="30" y="30"/ > </ graphics >

</name >

<toolspecific tool =" petrinet " version ="1.0" >

<placeCapacity capacity ="999999999"/ >

15 </toolspecific >

<graphics >< position x="2379" y="2315"/ > </ graphics >

<initialMarking ><text >1</ text ></ initialMarking >

</place >

<place id ="P1">

20 <name >

<text >P1 </text >

<graphics ><offset x="30" y="30"/ > </ graphics >

</name >

<toolspecific tool =" petrinet " version ="1.0" >

25 <placeCapacity capacity ="999999999"/ >

</toolspecific >

<graphics >< position x="2379" y="2450"/ > </ graphics >

<initialMarking ><text >0</ text ></ initialMarking >

</place >

30 <transition id="t0">

<name >

<text >t0 </text >

<graphics ><offset x="30" y="10"/ > </ graphics >

</name >

35 <toolspecific tool =" petrinet " version ="1.0" >

<rotation degree ="0"/ >

</toolspecific >

<graphics >< position x="2379" y="2392"/ > </ graphics >

</transition >

40 <arc id=" a0" source ="P0" target ="t0">

<inscription ><text >1</ text ></ inscription >

</arc >

<arc id=" a1" source ="t0" target ="P1">

<inscription ><text >1</ text ></ inscription >

45 </arc >

</page >

</net ></pnml >

Figure 7.1: An example PNML file
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execution of the implemented net however, the simple directory server solution
seems straightforward and good enough.

Code generation is handled by a small perl script, which converts a PNML
file into a directory containing the generated source files for all locations and
the directory service together with a Makefile to compile all binaries and start
them in parallel on the local machine for testing purposes.

The transformations of nets into more distributed versions presented in Fig-
ure 5.1 and Figure 5.4 have been implemented as separate perl scripts trans-
forming PNML files to other PNML files. This gives the user the ability to
inspect the resulting net5 before code generation.

7.3 Implementation Details and Networking

The network protocol is as simple as distributed network protocols get. The
directory service starts first and at a known IP/port combination. Each location
sends its own, automatically assigned, IP/port combination to the directory
service and receives in return the array of the addresses of all other locations,
possibly containing INADDR ANY addresses entries where the respective location
has not yet registered with the directory service. This repeats until none of the
latter remain.

After this initial phase of node discovery, each location l creates a TCP/IP
connection to all locations it might want to send tokens to, i. e. those targeted
by arcs exiting from l. During compilation each place of the compiled net is
assigned a unique id. When a location wants to deposit a token on a place, it
sends a 4-byte integer6 along these connections. As all communication across
location borders can happen asynchronously without ill effects, and TCP/IP
will go to quite some lengths to deliver the tokens entrusted to its care, this
protocol is sufficient.

While executing nets is a wonderful exercise in itself, the computer science
practitioner will usually demand that his creations perform some visible, possi-
bly useful, work. To this end the PNML to C transformation was augmented
to take a further input file which associates to each label from Act a block of
C code to execute upon firing of the transition(s) carrying said label. This
facility was subsequently used to debug and benchmark the PNML to PNML
transformations.

The code corresponding to a location l has to implement the firing rule for
all transitions residing on l. To this end, it needs to decide of which transitions
all preplaces hold a token, i. e. which are enabled. It then needs to choose one
such transition for firing. While this disregards step semantics, any concrete
actions associated with a transition would execute on the same thread anyway
and step semantics would not be observable.7 After a transition is chosen,

5and me a decent way to debug the generation
6in host byte order
7If desired, ST-semantics can be implemented via a PNML to PNML transformation and

judicious use of fork resp. waitpid
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incoming tokens must be removed and outgoing tokens produced. The former
amount to a trivial integer decrement, as the preplaces reside on l. The latter
may involve sending tokens across the network.

The current number of tokens on a place is stored in a global integer array,
which enabled and fire consult and modify. When a token is produced a
function sendToken is invoked which consults a constant mapping from places
to locations and either increments the local integer or issues a network write.

Most of the code, in particular everything pertaining to networking, is shared
across locations by means of #include directives. The locations differ essentially
in the implementation of the enabled and fire functions, which determine the
enabledness of transitions and in the latter case also handle the token movement
and the user-supplied code associated with transition labels.

Two strategies for selecting the transition to fire are implemented: One
slightly faster, which considers the transitions in turn and fires the first to be
found enabled. This approach will consistently decide conflicts the same way
each time they occur, which is a correct semantics for non-determinism, but
might run counter to some intuitions. The other strategy first collects all enabled
transitions and then pseudo-randomly samples them uniformly for firing. Only
the latter strategy guarantees progress in the case of a diverging net as after a
transformation à la Figure 5.1.

These strategies are run until either no transition was found to be enabled,
or a fixed upper number of firings occurred. After that the operating system is
polled for network input, i. e. incoming tokens. These are then put into the tar-
get places and firing rule processing continues as before. While rather efficient,
this of course increases the probability of firing “locally enabled” transitions rela-
tive to those which need remotely produced tokens. As the semantics considered
in this thesis are not probabilistic, this does not pose a problem, however.

The implementation of the PNML to PNML transformations follows the
formal definitions closely. To increase the probability of correctness, the actual
TEX source of the relevant figures was transformed into perl source. Each uni-
versal quantification resulted in an appropriate foreach loop. Exactly as in the
formal setting, each net element was assigned a name upon generation. After all
net elements are generated, they are unified using these names. Similarly, arcs
are created based upon source and target name, thereby connecting the correct
elements, even if arcs are generated in the scope of different quantifiers.

To enable a minimal degree of debuggability, graphical positions are assigned
for generated elements based upon the positions of the original elements and
the position of the element generator in the figure.

7.4 Performance and Comparison

To get an idea of the overhead introduced by the conflict replicating implemen-
tation, I applied it to the three test cases shown in Figures 7.2, 7.3, and 7.4.

Afterwards, each untransformed test case and each test case after applying
the conflict replicating implementation was compiled and run using the tools
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described in Section 7.2 in three variants:

a) As a single executable without any distribution.

b) As one executable per location, executed on a single machine M1.

c) As one executable per location, executed on a “network” of two machines
M1 and M2. Four runs have been done using this setup to understand the
effects of the (stochastic) allocation of locations to machines.

M1 used an Dual Core, Intel Pentium CPU B960 clocked at 2.20GHz and had
8GB of RAM installed. The kernel version was Linux version 3.8-1-amd64

(debian-kernel@lists.debian.org)(gcc version4.7.2(Debian 4.7.2-5))

#1 SMP Debian 3.8.11-1. M2 used a Quad Core, Intel Core2 Quad CPU
Q8200 clocked at 2.33GHz and had 4GB of RAM installed. The kernel ver-
sion was Linux eta-carinae 3.11-trunk-amd64 #1 SMP Debian 3.11-1 exp1

(2013-09-12) x86 64 GNU/Linux. The network between them was a consumer-
grade 1 GBit/s Ethernet, with a round-trip time of 0.240ms8.

Naturally, the transformation to the conflict replicating implementation in-
troduced new τ -transitions. In the case of Figure 7.2 approximately 23.3 trans-
actions were required to simulate one original transition firing. For Figure 7.3
it took around 10.5 transitions to simulate one original firing. For Figure 7.4 it
took between 26.8 and 28.4 implementation firings per original one, depending
on the probability of various execution paths, which in turn depended on the
concrete distribution of implementation locations across M1/M2.

The Figures A.1ff report the concrete frequencies of transition firings for
the various scenarios sampled over intervals of 1 second (and excluding the
first 10 seconds to exclude the time when the distributed systems settle into
equilibrium). The whiskers denote minimum and maximum numbers, the empty
boxes range from first to third quartile, the line within the box denotes median.

One obvious thing to note is that compiling everything into a single exe-
cutable is – as should be expected – vastly faster than any distributed variants.
Remember though that this can only be the case because the transitions are not
executing any time-using activities, as they might be in a more realistic system.

Further, it can be observed9 that some locations of the conflict replicating
implementation are never fired at all. This suggests some optimisation potential,
which is related to dead transitions being generated from Figure 5.4 which are
not needed in some contexts.

Looking at the actual slowdown, when comparing the implementations of the
largest test case of Figure 7.4, we find that the parallelism and communication
introduced by the conflict replicating implementation incurs so much overhead
that the total number of transition firings per second drops from 6.6 · 104T/s to
4.4 · 104T/s on a single machine and from 4.2 · 104T/s to 2.2 · 104T/s for (the
average10 of) the two machine case. While not particularly great, I consider this

8average over 20 ICMP echo requests done via the ping tool
9not in the graphs maybe, but in the raw data

10over only four runs, so take the numbers with a grain of salt
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a decent performance for a construction we essentially created as an existence
proof.

a b c d

Figure 7.2: Testcase 1: Trivial producer-consumer example.

x

a

y

b

z

c

Figure 7.3: Testcase 2: A repeatedly firing, non-pure M.
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Chapter 8

Context, Discussion and
Conclusion

8.1 Ways to Evade the (Negative) Theorems

The preceding sections seem to make a clear case for avoiding Ms in distributed
systems and abandoning any thoughts of distributed implementation whenever
such a structure is encountered. Reality however is not quite as disagreeable. In
particular, branching-time equivalence is often more than is needed. To begin
with, many actions a system can take cannot be blocked by the environment in
the first place. For many other actions, it is feasible to detect the current state
of the environment before attempting the action or aborting it without ill effects
if the environment is currently not permitting. Furthermore, relevant in partic-
ular when communicating with other systems, if a system consists of physically
separate locations, it is highly likely that any single observer detecting its ac-
tions will do so only after the actions have been asynchronously communicated,
again weakening the requirement of branching time correctness.

8.1.1 Probabilistic Algorithms

After the requirement of branching time has been loosened, the consensus prob-
lem remains, i. e. how to arrive at a consistent decision in all participating
locations. Many kinds of consensus problems, including whether to execute b
or {a, c} in Figure 5.2 can be solved as follows: Each participant in the deci-
sion stochastically chooses a large integer and proposes which way the decision
should go. The proposals together with the chosen integer are broadcast. The
proposal associated with the largest number wins. If multiple participants have
drawn the same number, depending on the requirements the process either re-
peats or the decision procedure aborts with an error. I strongly recommend
the latter as it will highlight implementation problems more readily without
compromising system reliability in production.

125
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The probability of two participants choosing the same number can be made
arbitrarily1 small. The communication overhead can be reduced by aggregating
sub-decisions instead of doing a full broadcast by each node. The main re-
maining problem is non-uniform sampling of the available integers, which might
increase the probability of ties very considerably. This problem is particularly
pronounced in embedded systems where real entropy is hard to come by but
might also occur due to undetected programming errors anywhere in the soft-
ware stack. Hence the above recommendation to error out, as a production
system must deal with errors anyway, e. g. due to network problems, and just
retrying to guess different random numbers might take an arbitrary number of
rounds and thereby considerable time after entropy has been depleted.

A possible alternative is statically assigning unique location ids during de-
ployment of the system and using them in lieu of random numbers. The down-
side is that any concrete process of assigning ids has its own probability of error
which in practice is surprisingly large. The same problem naturally occurs when
outsourcing the id assignment to a trusted third party, e. g. when using device
identifiers or ethernet addresses as unique identification [Hir].

8.1.2 Time and Bounded Message Delay

Another assumption which can often be relied upon in practice but which is
missing from nets as presented here is bounded message delay. In practice there
is usually an upper bound after which a message will either have arrived or is
otherwise assumed to be irretrievably lost. Nets as presented here however can
neither detect the passage of “enough time” nor the absence of an expected token
in a place. Hence certain solutions to distributed problems cannot be formulated
in nets, respectively the version presented in this thesis. Extensions to nets exist
which address both: [Ram74, MF76] introduced timed nets which can guarantee
delivery of tokens after a finite amount of time, [AF73]2 introduced inhibitor
arcs to detect absence of tokens.

These two facilities are in particularly relevant to practice when dealing with
failures, a problem the algorithms in this thesis do not burden themselves with.

Bounded message delay also becomes relevant when considering relaxed
branching semantics in the sense that the environment can not block actions
instantaneously but only after a known minimum time of advance warning as
is ofttimes the case when considering embedded systems. Without bounded
message delay a net cannot take advantage of such information as any attempt
to communicate it across locations might take too long. If the message delivery
bound is tight enough however, dissemination of information and a conflict res-
olution algorithm might be conducted while the information is still valid. This
way further system specifications can be implemented distributedly in practice.

1sufficiently small anyway [FS98]
2specifically, it was Agerwala who invented inhibitor arcs, as noted by his co-author in

[Fly74] (prior to the publication of this thesis, “who invented inhibitor arcs” returned zero
results in all search engines I tried).
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Another aspect often overlooked in algorithm development, and likewise not
pursued in this thesis, is the availability of global clocks. If used wisely, they can
create a total ordering of events without communication between participants.
The ordered events can later be communicated to other parts of the system
and locally assembled into the same global history everywhere, resulting in a
consistent view of the system state for each participant. While actual clocks are
not strictly necessary for such a setup, they can make debugging and reasoning
about a system a lot easier.

8.1.3 Quantum Mechanics

Many widely applied models of computing, including Petri nets, are based on
classical physics, i. e. do not deal with quantum mechanical effects. Usually
this poses not only no problem but restraints the solution space in a useful
way. As already alluded to in some footnotes in the papers constituting this
thesis, quantum mechanical effects might however come in handy when making
consistent decisions in a spatially distributed system.

In particular they break arguments about irreducible symmetry, e. g. as made
in [PN10, Pal03]. Consider a classical consensus problem: Two identical systems
t and u wish to decide whether to execute an action at t or at u. However they
are spatially separated. Whatever protocol you devise, as both systems are
entirely identical, they can at the same time always make the same internal
decisions, thereby always remaining in symmetrical internal states. Thus they
will never come to a situation where t thinks that the other system should do
the action, and u thinks that itself should do the action.

The obvious (and practically relevant) solution to the above problem is the
stochastic technique already presented. It might however seem unsatisfactory on
a theoretical level, as even physical randomness, say from thermal noise, cannot
guarantee that the two systems diverge within a limited number of rounds.
If such concerns bother you, consider the following (and entirely impractical)
protocol based upon the Hong-Ou-Mandel effect [HOM87]: Let t and u each
come with one part of a typical beam splitter, i. e. one triangular glass prism.
The two systems are connected by the procedure of combining these two half-
splitters into a working one. This setup is perfectly symmetrical. At the point
in time t and u need to decide which one takes the action, they both send a
photon into the beam splitter from their respective sides as in [BJD+06]. They
then wait for photons coming out from the beam splitter to their respective
side. If the two photons are indistinguishable, either t or u will observe any
outcoming photons, thereby breaking the symmetry. If the photons are not
indistinguishable, e. g. because they are not sent at the same time, the two
systems would have diverged already beforehand, again solving the problem of
symmetry.

Returning to the case of consistent decisions across a distributed system: In
the general case or in the case of an M the environment makes possible and
impossible the execution of certain transitions and this information must be
transferred to remote locations before these can act upon it. Barring serious
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disturbances of space-time[Alc94, Kra03] such transfer of information takes a
positive, non-zero amount of time. Within this time however, the environment
can alter its choice of allowed transitions. Hence the system can never act fast
enough.

However, quantum entanglement can help with some cases where a consistent
choice must be made between separated parts of the system, even though they
cannot communicate and no viable pre-determined strategy exists. A concrete
example was given in [BBT03] where (setting their n = 3) three players are
challenged to output an even number of ones if all of them receive a zero (and
not a one) as input and output an odd number of ones if exactly one player
receives a zero.

Unfortunately, this challenge cannot be faithfully represented as a net in our
framework as the complex constraints on input and output cannot be captured
by an environment enabling and disabling individual transitions at will.

Nonetheless this shows that consistent system behaviour can be achieved
without communication in a distributed system even in cases where classical
models predict this to be impossible.

8.2 Related Work

Where possible, I referenced additional literature in the context where it is most
relevant, i. e. in the preceding sections. Some works however are related to the
contents of this thesis in a more general or abstract way – or simply had no
place where they fit best. Such literature will be discussed in the following.

As before, most of the discussion can be found in the papers compiled
into this thesis, i. e. [GGS08b, GGS09, GGSU11, GGS11b, GGS11a, GGSU13,
MSUG14]

8.2.1 Petri Nets

We have not been the first to concern ourselves with the problem of distributed
Petri net execution. The question whether and how a net can be implemented
in a distributed way has been investigated at least in [Hop91, Tau88, BCD02,
BD12]. In these works, given a distribution of the transitions of a net, the net
is distributable iff it can be implemented by a net that is distributed w.r.t. that
distribution. The requirement that concurrent transitions may not be co-located
is absent; given the fixed distribution, there is no need for such a requirement.
These papers differ from each other, and from our work, in what counts as a
valid implementation.

The most similar work to our approach we know of is [Hop91], where Richard
Hopkins introduces the concept of distributable Petri Nets. These are defined
in terms of locality functions, which assign to every transition t a set of possible
machines or locations L(t) on which tmay be executed, subject to the restriction
that a set of transitions with a common preplace must share a common machine.
A plain net N is distributable iff for every locality function L that can be
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a b c

⇒

a b c

Figure 8.1: A specification and its Hopkins-implementation which added con-
currency.

a b c

⇒

a b c

Figure 8.2: A distributable net which is not considered distributable in [Hop91],
and our implementation of it.

imposed on it, it has a “distributed implementation”, a plain net N ′ with the
same set of visible transitions, in which each transition is assigned a specific
location, subject to three restrictions:

• the location of a visible transition t is chosen from L(t),

• transitions with a common preplace must have the same location

• and there exists a weak bisimulation between N and N ′, such that all
τ -transitions involved in simulating a transition t from N reside on one of
the locations L(t).

The last clause enforces both a behavioural correspondence between N and
N ′ and a structural one (through the requirement on locations). Thus, as in
our work, the implementation is a τ -net that is required to be behaviourally
equivalent to the original net. Hopkins allows implementations which are quite
elaborate and make informed decisions based upon global knowledge of the
net. As Hopkins notes, due to his use of interleaving semantics, his distributed
implementations do not always display the same concurrent behaviour as the
original nets, namely they add concurrency in some cases. This does not happen
in our asynchronous implementations. Hence, the net classes he describes in his
paper are incomparable with our class of distributable nets. One direction of
this inequality depends on his choice of interleaving semantics, which allows
the implementation in Figure 8.1. Already step failures equivalence does not
tolerate the added concurrency and the depicted net is not distributable in our
sense. The other direction of the inequality stems from the fact that we allow
implementations which do not share structure with the specification but only
emulate its behaviour. That way, the net in Figure 8.2 can be implemented in
our approach as depicted.



130 CHAPTER 8. CONTEXT, DISCUSSION AND CONCLUSION

The line of work from [Hop91] was continued at least in [BD12] where further
research is done on the question of distributability when an assignment from
transitions to locations is given. Multiple problematic patterns in Petri nets
and the associated transition systems are newly identified, but the “exhaustive
analysis of the induced situations” is still listed as an open problem.

Dirk Taubner has in [Tau88] given various protocols by which to implement
arbitrary nets in the OCCAM programming language. Although this program-
ming language offers synchronous communication he makes no substantial use
of that feature in the protocols, thereby effectively providing an asynchronous
implementation of nets. He does not indicate a specific equivalence relation, but
is effectively using linear-time equivalences to compare implementations to the
specification.

In [BCD02] an algorithm for the automated synthesis of distributed imple-
mentations of protocols is presented. The notion of distributed nets employed
therein differs from ours by not requiring formally that no parallelism may occur
on the same location. The authors however finally generate a finite automaton
for each location, again serialising all actions on a single location. In contrast
to our work and similar to [Hop91], the authors start with a user-supplied map
from events to locations, and answer the concrete problem of whether that spe-
cific distribution is realisable or not instead of requiring the maximal possible
parallelism to be realised.

A more abstract approach to the same underlying problem of correctly exe-
cuting an arbitrary net as a distributed system has been taken in [KP13]. The
authors provide a modified net semantics and an algorithm to split the net into
agents which can locally decide most choices and resort to a global scheduler in
case multiple agents must be coordinated. While such an approach loses branch-
ing time equivalence between a net and its implementation, it provides a clear
separation of concerns between executing the net and solving the distributed
coordination problems.

In [Sel97], Peter Selinger considers labelled transition systems whose visible
actions are partitioned into input and output actions. He defines asynchronous
implementations of such a system by composing it with in- and output queues,
and then characterises the systems that are behaviourally equivalent to their
asynchronous implementations. The main difference with our approach is that
we focus on asynchrony within a system, whereas Selinger focuses on the asyn-
chronous nature of the communications of a system with the outside world.

8.2.2 Process Algebra

While this thesis presents results on Petri nets only, our research project also
considered process calculi, in particular the π-calculus, to help ensure that re-
sults would not just be artefacts of the chosen model. The results – achieved
mainly by Uwe Nestmann and Kirstin Peters – were published in [PN10, PN12,
Pet12, PNG13, PSN11]. The precise relation can be investigated by considering
Petri net semantics for process algebras, as begun in [Men12].

Whereas on the Petri net side, we defined many concepts for asynchronous
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nets anew, in the land of the π-calculus a hierarchy of calculi of varying degrees
of asynchrony was already known, and provided πmix, πsep and πa [HT91, Bou92]
for further study. The core difference between these calculi is, in which ways
communication and choice are allowed to interact.

In πa, output actions are not allowed to guard a process different from ∅. In
πsep they may, but the prefixes guarding continuations after a choice must all
be either input or output guards for each choice. Only in πmix may input and
output guards be mixed within the same choice.

The expressive power of mixed choice, i. e. choice arbitrarily mixed with test
for input- and output communication availability (or guards in calculi parlance),
in the π-calculus was analysed in [Nes00, Gor10, PN10, PN12, Pet12, PNG13],
and before that already in [Pal03], whereas [PSN11] investigated encodings from
πmix into πsep or πa with respect to the preservation of causal independencies.
As the main contribution of that paper, it was shown that – in the asynchronous
π-calculus – there is a strong connection between synchronous interactions and
causal dependencies. More precisely – analogue to the separation result on
nets in Section 6.2 – that no encoding from the synchronous π-calculus with
mixed choice into the asynchronous π-calculus preserves causal independence
and satisfies all the criteria of [Gor10].

Ultimately we also want to validate applicable results in join calculus [FG96],
where joint input [Nes98] is allowed to synchronise processes.

But also outside our research group, quite a number of papers consider the
question of synchronous versus asynchronous interaction in the realm of process
algebras and the π-calculus.

In [Bou88] Luc Bougé considers the problem of implementing symmetric
leader election in the sub-languages of CSP obtained by allowing different forms
of communication, combining input and output guards in guarded choice in
different ways. He finds that the possibility of implementing leader election
depends heavily on the structure of the communication graphs. Truly symmetric
schemes are only possible in CSP with arbitrary input and output guards in
choices.

In [BP91] Frank de Boer and Catuscia Palamidessi consider various dialects
of CSP with differing degrees of asynchrony. In particular, they consider CSP
without output guards and CSP without any communication based guards.
They also consider explicitly asynchronous variants of CSP where output actions
cannot block, i. e. asynchronous sending is assumed. Similar work is done for
the π-calculus in [Pal97] by Catuscia Palamidessi, in [Nes00] by Uwe Nestmann
and in [Gor06] by Daniele Gorla. A rich hierarchy of asynchronous π-calculi has
been mapped out in these papers. Again mixed-choice plays a central role in
the implementation of truly synchronous behaviour.

Just as we applied notions of behavioural equivalence to compare imple-
mentation and specification of nets, the question which translations between
process calculi are “good” also needs an answer. The debate on this point is
still ongoing in the literature. It is well known that there is a good encoding
from the choice-free synchronous π-calculus into its asynchronous variant (see
[Bou92, HT91, Hon92]). It is also well-known [Pal03, Gor10, PN10] that there
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is no good encoding from πmix into its asynchronous variant if the encoding
translates the parallel operator homomorphically. Palamidessi was the first to
point out that mixed choice strictly raises the absolute expressive power of the
synchronous π-calculus compared to its asynchronous variant.

Analysing this result in [PN10], it was observed that it boils down to the
fact that only the full π-calculus can break syntactic symmetries, whereas its
asynchronous variant can not. Moreover, as already [Gor10] states, the condition
of homomorphic translation of the parallel operator is rather strict. Therefore,
Gorla proposes the weaker criterion of compositional translation of the source
language operators. As proven by [PN12], this weakening of the structural
condition on the encoding of the parallel operator turns the separation result
into an encodability result, i. e. there is an encoding from πmix into πa variant
with respect to the criteria of Gorla 3. Analysing the encoding given by [PN12],
it can be seen that it introduces additional causal dependencies.

8.2.3 Applications

The questions tackled in our theoretical research program have also been raised
repeatedly in the fields of hard- and software design.

There are approaches to hardware design where asynchronous interaction is
an intriguing feature due to performance and also security issues. Some exam-
ples can be found in the papers [Mis86], [Lam78] and [Lam03] for performance
and [FML+03] for the security aspect. In [Lam03] Lamport considers arbitra-
tion in hardware and outlines various arbitration-free “wait/signal” registers.
He notes that non-determinism is thought to require arbitration, but no proof
is known. He concludes that only marked graphs can be implemented using
these registers. Lamport then introduces “Or-Waiting”, i. e. waiting for any of
two signals, but has no model available to characterise the resulting processes.
The communication primitives used bear a striking similarity to our symmetri-
cally asynchronous nets.

On the side of software engineering, Message sequence charts (MSCs), also
contained in UML 2.0 under the name sequence diagrams, are a model for
specifying interactions between components (instances) of a system.

In extended versions of MSCs or in live sequence charts (LSCs, see [HM03]),
inline expressions allow the model to describe choices between possible be-
haviours in MSCs. Obviously, this requires some mechanism in order to make
sure that the choice is performed in a coherent way across system components
(see e. g. [GGW99] for a discussion of this type of problem). In Petri net seman-
tics of such situations, we find a reachable N, hence the net is not symmetrically
asynchronously implementable. However, the net is M-free.

A simple kind of MSCSs are basic message sequence charts (BMSCs) as
defined in [Int96], where choices are not allowed. A Petri net semantics of
BMCSs with asynchronous communication and a unique sending and receiving

3This encoding is neither prompt nor is the assumed equivalence ≍ strict, so the separation
results of [Gor10] do not apply here.
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event for each message will yield nets with unbranched places (see for instance
[GRG93]). Hence in this case the resulting nets are conflict-free and therefore
fully asynchronously implementable.

Similarly, issues of consistent choice in the face of asynchronous communica-
tion have already been investigated in the context of distributed algorithms. Ra-
bin and Lehmann observed in [RL94] that there is no fully symmetric distributed
solution to the dining philosophers problem. Mazurkiewicz gives the converse in
[Maz97], i. e. a distributed enumeration algorithm for all non-impossible cases
of communication graphs.

From a business perspective, there is a growing consensus that concerns
of availability and latency of a distributed system often trump the need for
consistent choices (e. g. [Vog09]). As an alternative path, the algorithm from
[Lam98] is employed and the added latency hidden behind various batching and
caching layers [SVS+13]. One way or another, fundamental improvements in
distributed algorithms have the potential to create a lot of value in this time of
planet-wide distribution.

8.3 Conclusions and Open Questions

The development of this thesis has (again) confirmed some of the folklore of
distributed system development: That distributed systems development is error-
prone and subtle. We published an algorithm and a correctness proof of it in a
peer-reviewed, specialist conference, and yet both the algorithm and the proof
were wrong. Our error was ultimately revealed during testing I performed for
this thesis.

Secondly, the experimental results also show – unsurprisingly – that com-
munication overhead for synchronisation has massive performance implications,
certainly so when communication cuts through various layers of caching and
optimization. Practical applications of distributed algorithms must carefully
weight these downsides against improvements in scalability.

At this point it should also be noted that no part of this thesis is concerned
with handling component failures of any kind. Adding such facilities will compli-
cate the algorithms further. As distributed systems by their very nature contain
more components than non-distributed ones, the probability of any component
failing is much higher for distributed systems. Thus, for practical applications,
failure handling is a must.

The formal results of this thesis include

• two equivalent definitions of distributed systems in terms of Petri nets,

• an characterization of Ns and Ms as crucial structures preventing distri-
bution,

• a concrete algorithm to maximally distribute all M-free nets, a proof of its
correctness, and a prototypical implementation of it, also
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• the other side of the argument that Ms constitute the exact boundary be-
tween systems which are distributable and those which are not, thereby

• the corollary that distributability under step branching time equivalences
depends on run-time reachability properties and is thus undecidable in the
general case, and that

• a hardware primitive which will make it possible to distribute arbitrary
systems up to step branching time equivalences can not exist.

While the results above shed some light on the (in-)abilities of distributed sys-
tems in general, and on Petri net models of the same more specifically, some
questions remain and some have found a more precise formulation.

To begin with, Ms have been shown to be stable with respect to step failures
equivalence and finer equivalences and completed pomset trace equivalence and
finer equivalences, but to be implementable in weak completed step trace and
coarser equivalences. This opens the question, where exactly the boundary
lies. More concretely, we have a long standing conjecture that there exists a
behavioural equivalence which behaves like a branching time equivalence for
such environments which can only interact with the system asynchronously and
that Ms will not be stable under this equivalence. If true, this would yield
distributed implementations of general Petri nets in many practical settings.

Our conflict replicating implementation also does not fully preserve the
causal behaviour of nets. It is an open problem to find a class of nets that
can be implemented distributedly while preserving divergence, branching time
and causality in full.

The work on stability of Ms under causal equivalences so far only covers
1-safe nets. The proof of our conjecture, that Theorem 15 can be extended to
non-safe nets is hence open. Also, further interesting structures and correspond-
ing net classes might be identified in the spectrum of increasingly synchronous
nets outlined in Section 6.3.

Regarding Ns, it is still open whether they are stable under linear time
equivalences, say step trace equivalence.

On a higher level of applications, we expect our results to be useful for
programming and modelling language design for distributed systems. Using a
Petri net semantics of a suitable system description language, we could compare
our class of distributed nets to the class of nets expressible in the language,
especially when restricting the allowed communication patterns in the various
ways considered in [BP91, Bou88] or in [Lyn96]. A first step in that direction
has been taken with [PNG13]. Used the other way around, our results can be
used as guidance when deciding which features to offer in a new language, as
they show some constructs to be unimplementable in practice. Again, it would
be helpful to develop formal mappings into existing language constructs which
are more accessible to language developers.

Finally, recent advances in the understanding and practical applicability of
quantum mechanics have undermined many assumptions in computing. This
pertains also to our impossibility results. It would be a very interesting thing
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in general to extend Petri nets to include quantum mechanical effects [Abr08].
Maybe in such a way that places could not only hold (classical) tokens but be in
a quantum state which is measured only when consumed by special measuring
transitions.
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bisimilarity with explicit divergence. Fundamenta Informaticae,
93(4):371–392, 2009. http://arxiv.org/abs/0812.3068.

[Gor06] Daniele Gorla. On the relative expressive power of asynchronous
communication primitives. In L. Aceto and A. Ingólfsdóttir, edi-
tors, Proc. of 9th Intern. Conf. on Foundations of Software Science
and Computation Structures (FoSSaCS ’06), volume 3921 of LNCS,
pages 47–62. Springer, 2006. doi:10.1007/11690634_4.

[Gor10] Daniele Gorla. Towards a Unified Approach to Encod-
ability and Separation Results for Process Calculi. Infor-
mation and Computation, 208(9):1031–1053, September 2010.
doi:10.1016/j.ic.2010.05.002.

[GR83] Ursula Goltz and Wolfgang Reisig. The non-sequential behaviour
of Petri nets. Information and Control, 57(2-3):125–147, 1983.
doi:10.1016/S0019-9958(83)80040-0.

[GRG93] Peter Graubmann, Ekkart Rudolph, and Jens Grabowski. Towards
a Petri net based semantics definition for message sequence charts.
In Proc. of the 6th SDL Forum (SDL ’93), 1993.

[GSW80] Hartmann J. Genrich and E. Stankiewicz-Wiechno. A dictionary of
some basic notions of net theory. In W. Brauer, editor, Advanced
Course: Net Theory and Applications, volume 84 of LNCS, pages
519–531. Springer, 1980. doi:10.1007/3-540-10001-6_39.

[GV87] Rob J. van Glabbeek and Frits W. Vaandrager. Petri net models
for algebraic theories of concurrency (extended abstract). In Proc.
PARLE ’87, volume 259 of LNCS, pages 224–242. Springer, 1987.
doi:10.1007/3-540-17945-3_13.

http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1016/B978-044482830-9/50019-9
http://arxiv.org/abs/0812.3068
http://dx.doi.org/10.1007/11690634_4
http://dx.doi.org/10.1016/j.ic.2010.05.002
http://dx.doi.org/10.1016/S0019-9958(83)80040-0
http://dx.doi.org/10.1007/3-540-10001-6_39
http://dx.doi.org/10.1007/3-540-17945-3_13


142 LITERATURE

[GW89] R. J. van Glabbeek and W. Peter Weijland. Branching time and
abstraction in bisimulation semantics (extended abstract). In G.X.
Ritter, editor, Information Processing 89, Proceedings of the IFIP
11th World Computer Congress, San Fransisco 1989, pages 613–618.
North-Holland, 1989.

[GW96] Rob J. van Glabbeek and W. Peter Weijland. Branching
time and abstraction in bisimulation semantics. Journal of
the ACM, 43(3):555–600, 1996. Extended abstract in [GW89].
doi:10.1145/233551.233556.

[Hir] Tatsushi Hiraki. Patent US8089981.

[HM03] David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSC’s and the Play-Engine. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2003.

[HOM87] Chung Ki Hong, Zhe Yu Ou, and Leonhard Mandel. Measure-
ment of subpicosecond time intervals between two photons by in-
terference. Physical Review Letters, 59:2044–2046, November 1987.
doi:10.1103/PhysRevLett.59.2044.

[Hon92] Kohei Honda. Notes on Soundness of a Mapping from π-calculus to
ν-calculus. With comments added in October 1993, May 1992.

[Hop91] Richard P. Hopkins. Distributable nets. In Advances in Petri
Nets 1991, volume 524 of LNCS, pages 161–187. Springer, 1991.
doi:10.1007/BFb0019974.

[HT91] Kohei Honda and Mario Tokoro. An Object Calculus for Asyn-
chronous Communication. In Proceedings of ECOOP ’91, volume
512 of LNCS, pages 133–147, 1991. doi:10.1007/BFb0057019.

[Int96] International Telecommunication Union. Message sequence chart,
1996. Standard ITU-T Z.120.

[Knu] Donald E. Knuth. FAQ on Knuth’s personal homepage.
http://www-cs-faculty.stanford.edu/~uno/faq.html.

[KP13] Joost-Pieter Katoen and Doron Peled. Taming confusion for mod-
eling and implementing probabilistic concurrent systems. In Pro-
gramming Languages and Systems - 22nd European Symposium on
Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings, volume 7792 of Lec-
ture Notes in Computer Science, pages 411–430. Springer, 2013.
doi:10.1007/978-3-642-37036-6_23.

http://dx.doi.org/10.1145/233551.233556
http://www.google.com/patents/US8089981
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1007/BFb0019974
http://dx.doi.org/10.1007/BFb0057019
http://www-cs-faculty.stanford.edu/~uno/faq.html
http://dx.doi.org/10.1007/978-3-642-37036-6_23


LITERATURE 143

[Kra03] Serguei Krasnikov. Quantum inequalities do not forbid
spacetime shortcuts. Phys. Rev. D, 67:104013, May 2003.
doi:10.1103/PhysRevD.67.104013.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in
a distributed system. Commun. ACM, 21(7):558–565, 1978.
doi:10.1145/359545.359563.

[Lam98] Leslie Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16(2):133–169, 1998.
doi:10.1145/279227.279229.

[Lam03] Leslie Lamport. Arbitration-free synchronization. Distrib. Comput.,
16(2-3):219–237, 2003. doi:10.1007/s00446-002-0076-2.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers, 1996.

[Maz97] Antoni W. Mazurkiewicz. Distributed enumeration.
Information Processing Letters, 61(5):233–239, 1997.
doi:10.1016/S0020-0190(97)00022-7.

[Men12] Stephan Mennicke. An Operational Petri Net Semantics for the
Join-Calculus. In B. Luttik and M. A. Reniers, editors, Combined
19th International Workshop on Expressiveness in Concurrency and
9th Workshop on Structural Operational Semantics, volume 89 of
Electronic Proceedings in Theoretical Computer Science, pages 131–
147, sep 2012. doi:10.4204/EPTCS.89.10.

[MF76] Philip M. Merlin and David J. Farber. Recoverability of com-
munication protocols–implications of a theoretical study. Com-
munications, IEEE Transactions on, 24(9):1036–1043, 1976.
doi:10.1109/TCOM.1976.1093424.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall In-
ternational Series in Computer Science. 1989.

[Mis86] Jayadev Misra. Axioms for memory access in asynchronous hard-
ware systems. ACM Transactions on Programming Languages and
Systems (TOPLAS), 8(1):142–153, 1986. doi:10.1145/5001.5007.

[MSUG14] Stephan Mennicke, Jens-W. Schicke-Uffmann, and Ursula Goltz. On
the step branching time closure of free-choice petri nets. In E. Abra-
ham and C. Palamidessi, editors, Formal Techniques for Distributed
Objects, Components, and Systems, volume 8461 of Lecture Notes in
Computer Science, pages 232–248. Springer Berlin Heidelberg, 2014.
doi:10.1007/978-3-662-43613-4_15.

http://dx.doi.org/10.1103/PhysRevD.67.104013
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1007/s00446-002-0076-2
http://dx.doi.org/10.1016/S0020-0190(97)00022-7
http://dx.doi.org/10.4204/EPTCS.89.10
http://dx.doi.org/10.1109/TCOM.1976.1093424
http://dx.doi.org/10.1145/5001.5007
http://dx.doi.org/10.1007/978-3-662-43613-4_15


144 LITERATURE

[Nes98] Uwe Nestmann. On the expressive power of joint input. In
C. Palamidessi and I. Castellani, editors, Proceedings of EXPRESS
’98, volume 16.2 of ENTCS. Elsevier Science Publishers, 1998.
doi:10.1016/S1571-0661(04)00123-9.

[Nes00] Uwe Nestmann. What is a ”Good” Encoding of Guarded
Choice? Information and Computation, 156:287–319, 2000.
doi:10.1006/inco.1999.2822.
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S. B. Fröschle and F. D. Valencia, editors, Proceedings of
EXPRESS’10, volume 41 of EPTCS, pages 136–150, 2010.
doi:10.4204/EPTCS.41.10.

[PN12] Kirstin Peters and Uwe Nestmann. Is it a “Good” Encoding of Mixed
Choice? In Proceedings of FoSSaCS 2012, volume 7213 of LNCS,
pages 210–224, 2012. doi:10.1007/978-3-642-28729-9_14.

[PNG13] Kirstin Peters, Uwe Nestmann, and Ursula Goltz. On Distributabil-
ity in Process Calculi. In M. Felleisen and P. Gardner, edi-
tors, Programming Languages and Systems - Proceedings 22nd Eu-
ropean Symposium on Programming, ESOP 2013, Rome, Italy,
March 2013, volume 7792 of LNCS, pages 310–329. Springer, 2013.
doi:10.1007/978-3-642-37036-6_18.

http://dx.doi.org/10.1016/S1571-0661(04)00123-9
http://dx.doi.org/10.1006/inco.1999.2822
http://dx.doi.org/10.1007/BF00268075
http://dx.doi.org/10.1145/263699.263731
http://dx.doi.org/10.1017/S0960129503004043
http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-37495
http://dx.doi.org/10.4204/EPTCS.41.10
http://dx.doi.org/10.1007/978-3-642-28729-9_14
http://dx.doi.org/10.1007/978-3-642-37036-6_18


LITERATURE 145

[Pra85] Vaughan R. Pratt. The pomset model of parallel processes: Unifying
the temporal and the spatial. In Seminar on Concurrency, Carnegie-
Mellon University, pages 180–196, London, UK, 1985. Springer.
doi:10.1007/3-540-15670-4_9.

[PSN11] Kirstin Peters, Jens-W. Schicke, and Uwe Nestmann. Synchrony vs
causality in the asynchronous pi-calculus. In B. Luttik and F. Va-
lencia, editors, Proceedings 18th International Workshop on Expres-
siveness in Concurrency, Aachen, Germany, 5th September 2011,
volume 64 of Electronic Proceedings in Theoretical Computer Sci-
ence, pages 89–103, 2011. doi:10.4204/EPTCS.64.7.

[Ram74] Chander Ramchandani. Analysis of asynchronous concurrent sys-
tems by timed petri nets. Technical report, Massachusetts Institute
of Technology, Cambridge, MA, USA, 1974.

[Rei82] Wolfgang Reisig. Deterministic buffer synchronization of sequential
processes. Acta Inf., 18:115–134, 1982. doi:10.1007/BF00264434.

[Rei84] Wolfgang Reisig. Partial Order Semantics versus Interleav-
ing Semantics for CSP-like Languages and its Impact on Fair-
ness. In Proc. of the 11th Colloquium on Automata, Languages
and Programming, pages 403–413, London, UK, 1984. Springer.
doi:10.1007/3-540-13345-3_37.

[RL94] Michael O. Rabin and Daniel J. Lehmann. On the advantages of
free choice: A symmetric and fully distributed solution to the din-
ing philosophers problem. In A. Roscoe, editor, A Classical Mind:
Essays in Honour of C.A.R. Hoare, chapter 20, pages 333–352. Pren-
tice Hall, 1994. An extended abstract appeared in Proceedings of
POPL’81, pages 133–138, doi:10.1145/567532.567547.

[Ros98] Anthony Roscoe. The Theory and Practice of Concurrency. Prentice
Hall, 1998. doi:10.1007/3-540-63141-0_26.

[RT86] Grzegorz Rozenberg and Pazhamaneri Subramaniam Thiagarajan.
Petri nets: Basic notions, structure, behaviour. In J.W. Bakker,
W.-P. Roever, and G. Rozenberg, editors, Current Trends in Con-
currency, volume 224 of LNCS, pages 585–668. Springer, 1986.
doi:10.1007/BFb0027048.

[Sch08] Jens-W. Schicke. Studienarbeit: Asynchronous Petri Net Classes,
2008. TU Braunschweig.

[Sch09] Jens-W. Schicke. Diplomarbeit: Synchrony and Asynchrony in
Petri Nets, 2009. TU Braunschweig.

[Sel97] Peter Selinger. First-order axioms for asynchrony. In Proc. 8th
International Conference on Concurrency Theory (CONCUR’97),

http://dx.doi.org/10.1007/3-540-15670-4_9
http://dx.doi.org/10.4204/EPTCS.64.7
http://dx.doi.org/10.1007/BF00264434
http://dx.doi.org/10.1007/3-540-13345-3_37
http://dx.doi.org/10.1145/567532.567547
http://dx.doi.org/10.1007/3-540-63141-0_26
http://dx.doi.org/10.1007/BFb0027048
http://drahflow.name/data/Asynchronous%20Petri%20Net%20Classes.pdf
http://drahflow.name/data/Synchrony%20and%20Asynchrony%20in%20Petri%20Nets.pdf
http://drahflow.name/data/Synchrony%20and%20Asynchrony%20in%20Petri%20Nets.pdf


146 LITERATURE

Warsaw, Poland, volume 1243 of LNCS, pages 376–390. Springer,
1997. doi:10.1007/3-540-63141-0_26.

[SPG11] Jens-W. Schicke, Kirstin Peters, and Ursula Goltz. Synchrony vs.
causality in asynchronous petri nets. In B. Luttik and F. Valencia,
editors, Proceedings 18th International Workshop on Expressiveness
in Concurrency, Aachen, Germany, 5th September 2011, volume 64
of Electronic Proceedings in Theoretical Computer Science, pages
119–131, 2011. doi:10.4204/EPTCS.64.9.

[SVS+13] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whip-
key, Eric Rollins, Mircea Oancea, Kyle Littlefield, David Menest-
rina, Stephan Ellner, et al. F1: A distributed SQL database that
scales. Proceedings of the VLDB Endowment, 6(11):1068–1079, 2013.
doi:10.14778/2536222.2536232.

[Tau88] Dirk Taubner. Zur verteilten Implementierung von Petrinetzen. In-
formationstechnik, 30(5):357–370, 1988. Technical report, TUM-I
8805, TU München. doi:10.1524/itit.1988.30.5.357.

[TV89] Dirk Taubner and Walter Vogler. Step failures semantics and
a complete proof system. Acta Inf., 27(2):125–156, 1989.
doi:10.1007/BF00265151.

[VN82] Guy Vidal-Naquet. Deterministic languages of petri nets.
In Claude Girault and Wolfgang Reisig, editors, Applica-
tion and Theory of Petri Nets, volume 52 of Informatik-
Fachberichte, pages 198–202. Springer Berlin Heidelberg, 1982.
doi:10.1007/978-3-642-68353-4_34.

[Vog93] Walter Vogler. Bisimulation and action refinement. Theor. Comput.
Sci., 114(1):173–200, 1993. doi:10.1016/0304-3975(93)90157-O.

[Vog09] Werner Vogels. Eventually consistent. Communications of the ACM,
52(1):40–44, 2009. doi:10.1145/1435417.1435432.

http://dx.doi.org/10.1007/3-540-63141-0_26
http://dx.doi.org/10.4204/EPTCS.64.9
http://dx.doi.org/10.14778/2536222.2536232
http://dx.doi.org/10.1524/itit.1988.30.5.357
http://dx.doi.org/10.1007/BF00265151
http://dx.doi.org/10.1007/978-3-642-68353-4_34
http://dx.doi.org/10.1016/0304-3975(93)90157-O
http://dx.doi.org/10.1145/1435417.1435432


Kapitel 10

Deutschsprachige
Zusammenfassung

Die wenigsten Computersysteme arbeiten heutzutage isoliert. Vielmehr inter-
agieren sie üblicherweise mehr oder minder dauerhaft mit ihrer Umgebung. Gle-
ichzeitig bestehen die meisten Systeme inzwischen aus mehreren Komponenten,
die bei genauerer Betrachtung ebenfalls als eigenständige Computer verstanden
werden können. Ganz offensichtlich gilt dies für Webanwendungen wie soziale
Netzwerke, die Milliarden von Benutzern zur Verfügung stehen müssen. Aber
auch auf der Skala einzelner Autos, Smartphones oder sogar medizinischer Im-
plantate finden sich oft mehrere Teilsysteme.

Seit langem ist bekannt, dass verteilte Systeme schwer zu Entwerfen und zu
implementieren sind. Viele der Probleme ergeben sich aus der Unfähigkeit selbst
der besten Programmierer alle möglichen Systemabläufe eines solchen Systems
zu überblicken – zu zahlreich sind die Varianten der zeitlichen Abläufe. Die nur
in einzelnen Abläufen resultierenden Fehler sind leicht zu übersehen und teil-
weise sehr schwer zu verstehen. Grundsätzlichere Probleme ergeben sich aber
sobald ein System konsistente Daten mehreren – typischerweise räumlich verteil-
ten – Benutzern gleichzeitig zur Verfügung stellen muss oder mehrere Teile einer
auch außerhalb des verteilten Systems verbundenen Umgebung steuern soll. In
derartigen Kontexten können die Verzögerungen, die durch die Informations-
weitergabe innerhalb des Systems entstehen, sichtbare Auswirkungen haben.

Die vorliegende Arbeit befasst sich mit genau diesen letzteren Problemen
und stellt dar, welche Konsistenz in seinem Verhalten ein verteiltes System
bestenfalls zeigen kann, wo Konsistenz nicht garantiert werden kann, und warum
das so ist.

Um diesen Fragen nachzugehen, werden zuerst verteilte und asynchrone Sys-
teme durch Petrinetze (im folgenden Netze) formalisiert und dann verschiede-
ne verhaltensbasierte Äquivalenzrelationen zwischen Netzen definiert, die ver-
schiedene Aspekte des Systemverhaltens unterschiedlich stark berücksichtigen.
Durch die Auswahl der Äquivalenzrelation wird es so möglich, nur die für einen
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bestimmten Anwendungsbereich relevanten Aspekte des Systemverhaltens zu
betrachten.

Der Hauptteil der Arbeit klassifiziert dann, unter Verwendung dieser For-
malisierung, Systeme bzw. Netze danach, ob ein verteiltes Netze existiert, dass
sich äquivalent verhält. In einigen Fällen, in denen das nicht der Fall ist, zeigt
die Arbeit, dass das Gegenbeispiel minimal in dem Sinne ist, dass alle anderen
nicht verteilbaren Systeme das gegebene Beispiel als Teilnetz enthalten.

Anschließend wird eine ausführbare, wenn auch prototypische, Implemen-
tierung einiger der betrachteten Konstruktionen und der resultierenden Netze
vorgestellt. Abschließend werden wie üblich verwandte Literatur und der größere
Kontext diskutiert.

Die vorliegende Arbeit besteht großteils aus Papieren, die während der Jahre
2008 bis 2014 veröffentlicht wurden, wie jeweils zu Anfang der entsprechenden
Kapitel und Abschnitte angegeben. Ich habe die Definitionen und Notation
zwischen den Papieren großteils angeglichen, um den formalen Vergleich zu vere-
infachen. Doppelte Inhalte habe ich natürlich ebenfalls zusammengefasst. Ab-
schnitt 6.3, Kapitel 7 und Abschnitt 8.1 enthalten vollständig unveröffentlichtes
Material.

Um das Verhalten zweier Netze zu vergleichen, gibt es zahllose Möglichkeiten
[Gla93]. In der vorliegenden Arbeit werden unter anderem Step-Failures-Äquiva-
lenz, schwache Bisimilarität, Branching-ST-Bisimilarität und Completed-Pom-
set-Trace-Äquivalenz verwendet.

Step-Failures-Äquivalenz ist eine der gröbsten Äquivalenzen, die sowohl die
Entscheidungsstruktur als auch Nebenläufigkeit in einem System berücksichti-
gen. Schwache Bisimilarität berücksichtigt die Entscheidungsstruktur stärker
und wird in der Literatur häufig verwendet. Branching-ST-Bisimilarität ist
eine sehr feine Äquivalenz, im speziellen unterscheidet sie strikt feiner als Step-
Failures-Äquivalenz. Completed-Pomset-Trace-Äquivalenz schließlich berück-
sichtigt die Entscheidungsstruktur eines Systems nicht, sondern nur die kausalen
Abhängigkeiten zwischen Aktionen.

Die Schaltregel in Petrinetzen ist so definiert, dass beim Feuern einer Tran-
sition alle eingehenden Marken synchron entfernt werden. In verteilten Systeme
ist dies jedoch eine unrealistische Annahme. In Abschnitt 3.1 wird daher jeder
Stelle und jeder Transition eines Netzes ein Ort zugeordnet und ein synchrones
Entfernen von Marken über Ortsgrenzen hinweg ausgeschlossen. Wären alle
Netzelemente am selben Ort, wäre das System nicht verteilt. Dementsprechend
werden anschließend Anforderungen an die Verteiltheit des Netzes gestellt und
drei verschieden starke Varianten solcher Anforderungen vorgestellt: Volle Asyn-
chronität, symmetrische Asynchronität und asymmetrische Asynchronität. Der
Asynchronitätsbegriff ist somit zweifach parametrisiert: Zum einen darüber,
welchen Grad der Asynchronität das verhaltensäquivalente Netz aufweisen muss,
zum anderen welche Äquivalenzrelation genutzt wird, um das Netzverhalten zu
vergleichen. Der Hauptteil der Arbeit befasst sich dann mit der Frage, welche
Netzstrukturen für die verschiedenen Verteilbarkeitsvarianten dazu führen, dass
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Netze verteilbar oder unverteilbar sind.
Als erste interessante Netzstruktur wird ein N identifiziert. In der Literatur

existieren verschiedene Begriffe von free-choice Netzen, die diese Struktur mehr
oder minder ausschließen. In der Arbeit wird unter anderem gezeigt, dass die
Menge aller Netze, die schwach bisimilar zu einem symmetrisch asynchronen
Netze sind, genau die Menge aller Netze ist, die schwach bisimilar zu einem
free-choice Netz sind. Damit wird eine explizite, formale Begründung für die
Definition von free-choice Netzen gegeben.

Bei gegebenen Anforderungen an ein System interessiert die exakte Um-
setzung weniger. Daher werden in den weiteren Teilen der Arbeit statt der
konkreten Asynchronitätsbegriffe das Konzept eines verteilbaren Netzes ver-
wendet. Ein Netz ist dabei verteilbar, wenn irgendein verhaltensäquivalentes
Netz existiert, das verteilt in dem Sinne ist, dass erstens alle Marken immer
nur innerhalb eines Ortes entfernt werden, und zweitens niemals zwei Transitio-
nen auf einem Ort im selben Schritt schalten. Dieser Verteiltbarkeitsbegriff ist
damit bezüglich der verwendeten Verhaltensäquivalenz parametrisiert.

Die zweite untersuchte Netzstruktur ist ein M. Es wird gezeigt, dass kein
Netz, dass ein M als Teilnetz enthält, verteilbar bezüglich Step-Failures-Äquiva-
lenz ist. Selbiges gilt damit auch für alle feineren Äquivalenzen. Anschließend
folgt ein konstruktiver Beweis, dass alle Netze ohne M verteilbar bezüglich
Branching-ST-Bisimilarität mit expliziter Divergenz sind. Selbiges gilt damit
auch für alle gröberen Äquivalenzen. Die beiden genannten Äquivalenzen um-
schließen einen großen Teil des Spektrums interessanter Äquivalenzen [Gla93],
insbesondere im Bereich, der sog. Branching-Time-Äquivalenzen enthält. Für
den umschlossenen Bereich zeigt diese Arbeit also, dass das M genau die Struk-
tur ist, deren Anwesenheit bestimmt, ob ein Netz verteilbar ist.

Für gröbere Äquivalenzen hatte ich bereits in [Sch09] gezeigt, dass alle Netze
verteilbar sind, solange Kausalität zwischen Aktionen keine Berücksichtigung in
der Äquivalenz findet. In Abschnitt 6.2 zeige ich nun, dass sobald Completed-
Pomset-Trace-Äquivalenz verwendet wird, also Kausalität berücksichtigt wird,
wieder alle Netze mit M unverteilbar sind.

In unserer Modellierung gehen wird davon aus, dass ein M nicht verteilt
realisierbar ist. Es stellt sich nun umgekehrt die Frage, was geschähe, wenn doch
eine Möglichkeit gefunden würde (z.B. durch Ausnutzung quantenmechanischer
Prozesse) ein alleinstehendes M zu verteilen. In Abschnitt 6.3 zeige ich, dass
dies allein nicht ausreicht, um alle Netze verteilen zu können. Vielmehr lassen
sich beliebig große Teilnetze finden, die nicht in einzelne Ms zerfallen und als
ein Block verteilt werden müssten.

Da der Beweis in Abschnitt 5.1.3 sehr groß ist, erschien es mir ratsam, die
angegebene Implementierung auch zu testen. Kapitel 7 beschreibt daher eine
prototypische Implementierung der Konstruktion. Und in der Tat enthält die
vorliegende Arbeit eine gegenüber der in [GGSU11] veröffentlichten Fassung
korrigierte Konstruktion. Nebenbei zeigt die Implementierung auch, dass sogar
eine triviale Übersetzung der aus unserer Konstruktion entspringenden Netze
in ausführbare Programme eine für manche Bereiche ausreichende Performance
aufweist.
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Die Arbeit schließt in Kapitel 8 mit einer Übersicht über Kontext, Literatur
und offene Fragen. Es enthält auch eine kurze Diskussion der Anwendbarkeit der
Theoreme in der Praxis, insbesondere welche Möglichkeiten trotz der formalen
Ergebnisse bestehen, reale Systeme die ein M enthalten, zu verteilen. Dies
ist zum Beispiel möglich, in dem beliebig kleine Wahrscheinlichkeiten für Nicht-
Termination in Kauf genommen werden. Unberücksichtigt ist in den Theoremen
auch, dass üblicherweise robuste Annahmen über die relative Geschwindigkeit
verteilter Uhren möglich sind. Außerdem basieren die meisten Systemmodelle –
auch Petrinetze – derzeit auf klassischer Physik, berücksichtigen Quanteneffekte
also nicht.
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Experimental Data

0 5 10 15
106T/s

Figure A.1: Transactions per second, original net of Figure 7.2, single executable

0 5 10 15 20 25 30 35 40 45
103T/s

Figure A.2: Transactions per second and location, original net of Figure 7.2,
single machine

0 2.5 5 7.5 10 12.5 15 17.5
103T/s

Figure A.3: Transactions per second and location, original net of Figure 7.2,
two machines, run 1
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0 2.5 5 7.5 10 12.5 15 17.5
103T/s

Figure A.4: Transactions per second and location, original net of Figure 7.2,
two machines, run 2

0 2.5 5 7.5 10 12.5 15 17.5
103T/s

Figure A.5: Transactions per second and location, original net of Figure 7.2,
two machines, run 3

0 2.5 5 7.5 10 12.5 15 17.5
103T/s

Figure A.6: Transactions per second and location, original net of Figure 7.2,
two machines, run 4

0 5 10 15 20 25 30 35
105T/s

Figure A.7: Transactions per second, conflict replicating implementation of Fig-
ure 7.2, single executable
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102T/s

Figure A.8: Transactions per second, conflict replicating implementation of Fig-
ure 7.2, single machine

0 5 10 15 20 25 30 35 40
102T/s

Figure A.9: Transactions per second and location, conflict replicating imple-
mentation of Figure 7.2, two machines, run 1

0 5 10 15 20 25 30 35 40
102T/s

Figure A.10: Transactions per second and location, conflict replicating imple-
mentation of Figure 7.2, two machines, run 2
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0 5 10 15 20 25 30 35 40
102T/s

Figure A.11: Transactions per second and location, conflict replicating imple-
mentation of Figure 7.2, two machines, run 3

0 5 10 15 20 25 30 35 40
102T/s

Figure A.12: Transactions per second and location, conflict replicating imple-
mentation of Figure 7.2, two machines, run 4

0 5 10
106T/s

Figure A.13: Transactions per second, original net of Figure 7.3, single exe-
cutable

0 5 10 15 20 25 30 35 40 45
103T/s

Figure A.14: Transactions per second and location, original net of Figure 7.3,
single machine
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0 5 10
103T/s

(a) run 1

0 5 10
103T/s

(b) run 2

0 5 10
103T/s

(c) run 3

0 5 10
103T/s

(d) run 4

Figure A.15: Transactions per second and location, original net of Figure 7.3,
two machines

0 5 10
105T/s

Figure A.16: Transactions per second, conflict replicating implementation of
Figure 7.3, single executable

0 10 20 30 40 50 60 70
102T/s

Figure A.17: Transactions per second and location, conflict replicating imple-
mentation of Figure 7.3, single machine
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0 5 10 15 20 25 30 35 40
102T/s

Figure A.18: Transactions per second and location, conflict replicating imple-
mentation of Figure 7.3, two machines, run 1

0 5 10 15 20 25 30 35 40
102T/s

Figure A.19: Transactions per second and location, conflict replicating imple-
mentation of Figure 7.3, two machines, run 2
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0 5 10 15 20 25 30 35 40
102T/s

Figure A.20: Transactions per second and location, conflict replicating imple-
mentation of Figure 7.3, two machines, run 3

0 5 10 15 20 25 30 35 40
102T/s

Figure A.21: Transactions per second and location, conflict replicating imple-
mentation of Figure 7.3, two machines, run 4

0 10 20 30 40 50 60 70 80 90
105T/s

Figure A.22: Transactions per second, original net of Figure 7.4, single exe-
cutable
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0 10 20 30 40 50 60 70
103T/s

Figure A.23: Transactions per second and location, original net of Figure 7.4,
single machine

0 5 10 15 20 25 30 35 40
103T/s

Figure A.24: Transactions per second and location, original net of Figure 7.4,
two machines, run 1

0 5 10 15 20 25 30 35 40
103T/s

Figure A.25: Transactions per second and location, original net of Figure 7.4,
two machines, run 2

0 5 10 15 20 25 30 35 40
103T/s

Figure A.26: Transactions per second and location, original net of Figure 7.4,
two machines, run 3

0 5 10 15 20 25 30 35 40
103T/s

Figure A.27: Transactions per second and location, original net of Figure 7.4,
two machines, run 4
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0 5 10 15 20 25 30 35
104T/s

Figure A.28: Transactions per second, conflict replicating implementation of
Figure 7.4, single executable
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0 5 10 15 20
102T/s

Figure A.29: Transactions per second and location, conflict replicating imple-
mentation of Figure 7.4, single machine
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0 5 10
102T/s

(a) run 1

0 5 10
102T/s

(b) run 2

Figure A.30: Transactions per second and location, conflict replicating imple-
mentation of Figure 7.4, two machines
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0 5 10
102T/s

(a) run 3

0 5 10
102T/s

(b) run 4

Figure A.31: Transactions per second and location, conflict replicating imple-
mentation of Figure 7.4, two machines
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